13 research outputs found

    Abrupt grain boundary melting in ice

    Full text link
    The effect of impurities on the grain boundary melting of ice is investigated through an extension of Derjaguin-Landau-Verwey-Overbeek theory, in which we include retarded potential effects in a calculation of the full frequency dependent van der Waals and Coulombic interactions within a grain boundary. At high dopant concentrations the classical solutal effect dominates the melting behavior. However, depending on the amount of impurity and the surface charge density, as temperature decreases, the attractive tail of the dispersion force interaction begins to compete effectively with the repulsive screened Coulomb interaction. This leads to a film-thickness/temperature curve that changes depending on the relative strengths of these interactions and exhibits a decrease in the film thickness with increasing impurity level. More striking is the fact that at very large film thicknesses, the repulsive Coulomb interaction can be effectively screened leading to an abrupt reduction to zero film thickness.Comment: 8 pages, 1 figur

    CLASH-VLT: The mass, velocity-anisotropy, and pseudo-phase-space density profiles of the z

    Full text link

    The Merger in Abell 576: A Line‐of‐Sight Bullet Cluster?

    No full text
    Using a combination of Chandra and XMM observations, we confirmed the presence of a significant velocity gradient along the NE/E-W/SW direction in the intracluster gas of the cluster Abell 576. The results are consistent with a previous ASCA SIS analysis of this cluster. The error weighted average over ACIS-S3, EPIC MOS 1 & 2 spectrometers for the maximum velocity difference is >3.3E03 km/s at the 90% confidence level, similar to the velocity limits estimated indirectly for the "bullet" cluster (1E0657-56). The probability that the velocity gradient is generated by standard random gain fluctuations with Chandra and XMM is <0.1%. The regions of maximum velocity gradient are in CCD zones that have the lowest temporal gain variations. It is unlikely that the velocity gradient is due to Hubble distance differences between projected clusters (probability<~0.01%). We mapped the distribution of elemental abundance ratios across the cluster and detected a strong chemical discontinuity using the abundance ratio of silicon to iron, equivalent to a variation from 100% SN Ia iron mass fraction in the West-Northwest regions to 32% in the Eastern region. The "center" of the cluster is located at the chemical discontinuity boundary, which is inconsistent with the radially symmetric chemical gradient found in some regular clusters, but consistent with a cluster merging scenario. We predict that the velocity gradient as measured will produce a variation of the CMB temperature towards the East of the core of the cluster that will be detectable by current and near-future bolometers. The measured velocity gradient opens for the possibility that this cluster is passing through a near line-of-sight merger stage where the cores have recently crossed.Comment: 24 pages, 2 tables and 20 figures; accepted for publication in the Astrophysical Journal. For full version with all figures click on http://www.astro.lsa.umich.edu/~rdupke/a576_web.pd

    Elektrokrampftherapie

    No full text

    Stabilization of Nanoscale Quasi-Liquid Interfacial Films in Inorganic Materials: A Review and Critical Assessment

    No full text

    Wissenschaftliche Grundlagen der EKT

    No full text
    corecore