610 research outputs found

    Becoming an Open Author! : A reference for writing and self-publishing an open textbook

    Get PDF
    This Becoming an Open Author Guide is a support resource is designed to help you become an open author. Open Textbooks and Open educational resources (OER) are defined as teaching, learning, and research resources that, through permissions granted by the copyright holder, allow others to use, distribute, keep, or make changes to them. We consider this publication as a type of OER that trains faculty, staff, and students how to build, customize, and use open textbooks. This guide is adapted from the BCcampus Open Education Self- Publishing Guide by Lauri M. Aesoph is used under a CC BY 4.0 licence. Aesoph, L.M. (2018). Self-Publishing Guide. Victoria, BC: BCcampus. Retrieved from https://opentextbc.ca/ selfpublishguide

    Digital libraries for open science: Using a socio-technical interaction network approach

    Get PDF
    This paper argues that using Socio-Technical Interaction Networks to build on extensively-used Digital Library infrastructures for supporting Open Science knowledge environments. Using a more social -technical approach could lead to an evolutionary reconceptualization of Digital Libraries. Digital Libraries being used as knowledge environments, built upon on the document repositories, will also emphasize the importance of user interaction and collaboration in carrying out those activities. That is to say, the primary goal of Digital Libraries is to help users convert information into knowledge; therefore, Digital Libraries examined in light of socio-technical interaction networks have the potential to shift Digital Libraries from individual, isolated collections to more interoperable, interconnected knowledge-creating repositories that support an evolving relationship between open science users and the Digital Library environment

    Senior Thesis Aproval Form

    Get PDF
    Please Download this form for submission with your Senior Thesis\u27s per the Claremont Colleges Library. Submit this form and your senior thesis during the initial submission process to Scholarship@Claremont. Please note: submissions with no signature(s) from a faculty reader will be immediately removed from the publishing queue

    The Conundrum of Senior Thesis in the Library\u27s Open Access Institutional Repository

    Get PDF
    Scholarship@Claremont (S@C) is the official institutional repository for the Claremont Colleges Consortium (a group of seven library arts colleges in Southern California) and is managed by The Claremont Colleges Library. For more than ten years, library staff has been assisting Seniors with posting their undergraduate theses as a part of the ETD program, and they are some of the most downloaded items numbering in the 300,000-plus range. Theses are accessible via Open access and on the Campuses only. This poster will share some challenges in hosting and posting workflows for students, policies, and procedures for library staff and our campus partners. We will also share our pre-deposit support to students and faculty through education and advocacy. Finally, we would like to share and discuss pathways for moving forward with the Senior Thesis

    The p38MAPK-MK2 Signaling Axis as a Critical Link Between Inflammation and Synaptic Transmission

    Get PDF
    © Copyright © 2021 Beamer and Corrêa. p38 is a mitogen-activated protein kinase (MAPK), that responds primarily to stress stimuli. p38 has a number of targets for phosphorylation, including MAPK-activated protein kinase 2 (MK2). MK2 primarily functions as a master regulator of RNA-binding proteins, indirectly controlling gene expression at the level of translation. The role of MK2 in regulating the synthesis of pro-inflammatory cytokines downstream of inflammation and cellular stress is well-described. A significant amount of evidence, however, now points to a role for the p38MAPK-MK2 signaling axis in mediating synaptic plasticity through control of AMPA receptor trafficking and the morphology of dendritic spines. These processes are mediated through control of cytoskeletal dynamics via the activation of cofilin-1 and possibly control of the expression of Arc/Arg3.1. There is evidence that MK2 is necessary for group I metabotropic glutamate receptors long-term depression (mGluR-LTD). Disruption of this signaling may play an important role in mediating cognitive dysfunction in neurological disorders such as fragile X syndrome and Alzheimer’s disease. To date, the role of neuronal MK2 mediating synaptic plasticity in response to inflammatory stimuli has not yet been investigated. In immune cells, it is clear that MK2 is phosphorylated following activation of a broad range of cell surface receptors for cytokines and other inflammatory mediators. We propose that neuronal MK2 may be an important player in the link between inflammatory states and dysregulation of synaptic plasticity underlying cognitive functions. Finally, we discuss the potential of the p38MAPK-MK2 signaling axis as target for therapeutic intervention in a number of neurological disorders

    Combining genetic and geospatial analyses to infer population extinction in mygalomorph spiders endemic to the Los Angeles region. Anim

    Get PDF
    Abstract Although hyperdiverse groups like terrestrial arthropods are almost certainly severely impacted by habitat fragmentation and destruction, few studies have formally documented such effects. In this paper, we summarize the results of a multifaceted research approach to assess the magnitude and importance of anthropogenic population extinction on the narrowly endemic trapdoor spider genus Apomastus. We used geographical information systems modeling to reconstruct the likely historical distribution of Apomastus, and used molecular phylogeographic data to discern population genetic structure and detect genetic signatures of population extinction. In combination, these complementary lines of inference support direct observations of population extinction, and lead us to conclude that population extinction via urbanization has played an important role in defining the modern-day distribution of Apomastus species. This population loss implies coincident loss of genetic and adaptive diversity within this genus, and more generally, suggests a loss of ground-dwelling arthropod population diversity throughout the Los Angeles Basin. Strategies for minimizing this loss are proposed

    A Changing Hydrological Regime: Trends in Magnitude and Timing of Glacier Ice Melt and Glacier Runoff in a High Latitude Coastal Watershed

    Get PDF
    With a unique biogeophysical signature relative to other freshwater sources, meltwater from glaciers plays a crucial role in the hydrological and ecological regime of high latitude coastal areas. Today, as glaciers worldwide exhibit persistent negative mass balance, glacier runoff is changing in both magnitude and timing, with potential downstream impacts on infrastructure, ecosystems, and ecosystem resources. However, runoff trends may be difficult to detect in coastal systems with large precipitation variability. Here, we use the coupled energy balance and water routing model SnowModel-HydroFlow to examine changes in timing and magnitude of runoff from the western Juneau Icefield in Southeast Alaska between 1980 and 2016. We find that under sustained glacier mass loss (−0.57 ± 0.12 m w. e. a−1), several hydrological variables related to runoff show increasing trends. This includes annual and spring glacier ice melt volumes (+10% and +16% decade−1) which, because of higher proportions of precipitation, translate to smaller increases in glacier runoff (+3% and +7% decade−1) and total watershed runoff (+1.4% and +3% decade−1). These results suggest that the western Juneau Icefield watersheds are still in an increasing glacier runoff period prior to reaching “peak water.” In terms of timing, we find that maximum glacier ice melt is occurring earlier (2.5 days decade−1), indicating a change in the source and quality of freshwater being delivered downstream in the early summer. Our findings highlight that even in maritime climates with large precipitation variability, high latitude coastal watersheds are experiencing hydrological regime change driven by ongoing glacier mass loss.The authors would like to thank W. P. Dryer, C. McNeil, S. Candela, and J. Pierce for help in the field. R. Crumley and C. Cosgrove assisted with SnowModel initialization. The Juneau Icefield Research Program (JIRP) provided field data and logistical support. E. Berthier provided geodetic data, F. Ziemen contributed model results, and C. McNeil provided assistance with datasets on behalf of both USGS and JIRP. The authors thank three anonymous reviewers for suggestions that have greatly improved the manuscript. This work was supported by a Department of Interior Alaska Climate Adaptation Science Center graduate fellowship awarded under Cooperative Agreement G17AC00213, by NASA under award NASANNX16AQ88G, by the National Science Foundation under award OIA-1208927 and by the State of Alaska (Experimental Program for Stimulating Competitive Research–Alaska Adapting to Changing Environments award), and by the University of Alaska Fairbanks Resilience and Adaptation Program. The authors acknowledge that field work was conducted on the traditional and unceded lands of the Lingit Aani (Tlingit), Michif Piyii (Métis), and Dënéndeh nations.Ye

    Radiation Test Results for a MEMS Microshutter Operating at 60 K

    Get PDF
    The James Webb Space Telescope (JWST), the successor to the Hubble Space Telescope, is due to be launched in 2013 with the goal of searching the very distant Universe for stars that formed shortly after the Big Bang. Because this occurred so far back in time, the available light is strongly red-shifted, requiring the use of detectors sensitive to the infrared portion of the electromagnetic spectrum. HgCdTe infrared focal plane arrays, cooled to below 30 K to minimize noise, will be used to detect the faint signals. One of the instruments on JWST is the Near Infrared Spectrometer (NIRSPEC) designed to measure the infrared spectra of up to 100 separate galaxies simultaneously. A key component in NIRSPEC is a Micro-Electromechanical System (MEMS), a two-dimensional micro-shutter array (MSA) developed by NASA/GSFC. The MSA is inserted in front of the detector to allow only the light from the galaxies of interest to reach the detector and to block the light from all other sources. The MSA will have to operate at 30 K to minimize the amount of thermal radiation emitted by the optical components from reaching the detector array. It will also have to operate in the space radiation environment that is dominated by the MSA will be exposed to a large total ionizing dose of approximately 200 krad(Si). Following exposure to ionizing radiation, a variety of MEMS have exhibited performance degradation. MEMS contain moving parts that are either controlled or sensed by changes in electric fields. Radiation degradation can be expected for those devices where there is an electric field applied across an insulating layer that is part of the sensing or controlling structure. Ionizing radiation will liberate charge (electrons and holes) in the insulating layers, some of which may be trapped within the insulating layer. Trapped charge will partially cancel the externally applied electric field and lead to changes in the operation of the MEMS. This appears to be a general principle for MEMS. Knowledge of the above principle has raised the concern at NASA that the MSA might also exhibit degraded performance because, i) each shutter flap is a multilayer structure consisting of metallic and insulating layers and ii) the movement of the shutter flaps is partially controlled by the application of an electric field between the shutter flap and the substrate (vertical support grid). The whole mission would be compromised if radiation exposure were to prevent the shutters from opening and closing properly. energetic ionizing particles. Because it is located A unique feature of the MSA is that, as outside the spacecraft and has very little shielding, previously mentioned, it will have to operate at temperatures near 30 K. To date, there are no published reports on how very low temperatures (- 30K) affect the response of MEMS devices to total ionizing dose. Experiments on SiO2 structures at low temperatures (80 K) indicate that the electrons generated by the ionizing radiation are mobile and will move rapidly under the application of an external electric field. Holes, on the other hand, that would normally move in the opposite direction through the SiO2 via a "thermal hopping" process, are effectively immobile at low electric fields as they are trapped close to their generation sites. However, for sufficiently large electric fields (greater than 3 MV/cm) holes are able to move through the SiO2. The larger the field, the more rapidly the holes move. The separation of the electrons and holes leads to a reduced electric field within the insulating layer. To overcome this reduction in electric field, a greater external voltage will have to be applied that alters the normal operation of the device. This report presents the results of radiation testing of the MSA at 60 K. The temperature was higher than the targeted temperature because of a faulty electrical interconnect on the test board. Specifically, our goal was to determine whether the MSA would function propey after a TID of 200 krad(Si)
    corecore