243 research outputs found

    Particle flux, and composition of sedimenting matter, in the Greenland Sea

    Get PDF
    Vertical flux of particulate material was recorded with moored sediment traps during 1988/1989 in the Greenland Sea at 72 degrees N, 10 degrees W. This region exhibits pronounced seasonal variability in ice cover. Annual fluxes at 500 m water depth were 22.79, 8.55, 2.39, 3.81 and 0.51 g m(-2) for total flux (dry weight), carbonate, particulate biogenic silicate, particulate organic carbon and nitrogen, respectively. Fluxes increased in April, maximum rates of all compounds occurred in May-June, and consistently high total flux rates of around 100 mg m(-2)d(-1) prevailed during the summer. The increasing flux of biogenic particles measured in April is indicative of an early onset of algal growth in spring. Small pennate diatoms dominated in the trap collections during April, and were still numerous during the high flux period when Thalassiosira species were the most abundant diatoms. During May-June, up to 22% of the Thalassiosira cells collected were viable-looking cells. The faecal pellet flux increased after the May-June event. Therefore we conclude that the diatoms settled as phytodetritus, most likely in rapidly sinking aggregates. From seasonal nutrient profiles it is concluded that diatoms contribute 25% to new production during spring and 50% on an annual basis. More than 50% of newly produced silicate particles are dissolved above the 500 m horizon. High new production during spring does not lead to a pronounced sedimentation pulse of organic matter during spring but elavated vertical export is observed during the entire growth perio

    Abundance, encystment and sedimentation of acantharia during Autumn in the East Greenland Sea

    Get PDF
    The abundance and sedimentation of acantharia and their cysts was recorded in the water column and sediment traps in the East Greenland Sea in August-September 1990. Although acantharia constituted <1% of total suspended particulate organic carbon (POC) in the water column, up to 90% (average 55%) of the POC sedimenting in 100 m was present in the form of acantharian cysts during a 9 day drift experiment. Rapid dissolution of strontium sulphate, of which their shells and spines are constructed, was evidenced by their disappearance with depth in the water column, maximum dissolution occurring between 500 and 1000 m water depth. Mass encystment and sedimentation of this single group of sarcodine protozoa can have dramatic effects on, the measurement of particulate fluxes in the open ocean, and may be a recurrent phenomenon in the eastern North Atlantic

    HAUSGARTEN: Multidisciplinary investigations at a deep-sea, long-term observatory in the Arctic Ocean

    Get PDF
    The marine Arctic has played an essential role in the history of our planet over the past 130 million years and contributes considerably to the present functioning of Earth and its life. The global cycles of a variety of materials fundamental to atmospheric conditions and thus to life depend to a signifi cant extent on Arctic marine processes (Aargaard et al., 1999). The past decades have seen remarkable changes in key Arctic variables. The decrease of sea-ice extent and sea-ice thickness in the past decade is statistically signifi - cant (Cavalieri et al., 1997; Parkinson et al., 1999; Walsh and Chapman, 2001; Partington et al., 2003; Johannessen et al., 2004). There have also been large changes in the upper and intermediate layers of the ocean, which have environmental implications. For instance, the deep Greenland Sea has continued its decadal trend towards warmer and saltier conditions, with a corresponding decrease in oxygen content, refl ecting the lack of effective local convection and ventilation (Dickson et al., 1996; Boenisch et al., 1997). Changes in temperature and salinity and associated shifts in nutrient distributions will directly affect the marine biota on multiple scales from communities and populations to individuals, consequently altering food-web structures and ecosystem functioning (Benson and Trites, 2002; Moore, 2003; Schumacher et al., 2003; Wiltshire and Manly, 2004; Perry et al., 2005). Today, we do not know whether the severe alterations in abiotic parameters represent perturbations due to human impacts, natural long-term trends, or new equilibriums (Bengtson et al., 2004). Because Arctic organisms are highly adapted to extreme environmental conditions with strong seasonal forcing, the accelerating rate of recent climate change challenges the resilience of Arctic life (Hassol, 2004). The entire system is likely to be severely affected by changing ice and water conditions, varying primary production and food availability to faunal communities, an increase in contaminants, and possibly increased UV irradiance. The stability of a number of Arctic populations and ecosystems is probably not strong enough to withstand the sum of these factors, which might lead to a collapse of subsystems. To detect and track the impact of large-scale environmental changes in the transition zone between the northern North Atlantic and the central Arctic Ocean, and to determine experimentally the factors controlling deep-sea biodiversity, the German Alfred Wegener Institute for Polar and Marine Research (AWI) established the deepsea, long-term observatory HAUSGARTEN, representing the fi rst, and by now only, open-ocean, long-term station in a polar region

    Interannual variability (2000–2013) of mesopelagic and bathypelagic particle fluxes in relation to variable sea ice cover in the eastern Fram Strait

    Get PDF
    The Fram Strait connects the Atlantic and Arctic Oceans and is a key conduit for sea ice advected southward by the Transpolar Drift and northward inflow of warm Atlantic Waters. Continued sea ice decline and “Atlantification” are expected to influence pelagic–benthic coupling in the Fram Strait and Arctic as a whole. However, interannual variability and the impact of changing ice conditions on deepwater particle fluxes in the Arctic remain poorly characterized. Here, we present long-term sediment trap records (2000–2013) from mesopelagic (200 m) and bathypelagic (2,300 m) depths at two locations (HGIV and HGN) in the Fram Strait subjected to variable ice conditions. Sediment trap catchment areas were estimated and combined with remote sensing data and a high-resolution model to determine the ice cover, chlorophyll concentration, and prevailing stratification regimes. Surface chlorophyll increased between 2000 and 2013, but there was no corresponding increase in POC flux, suggesting a shift in the efficiency of the biological carbon pump. A decrease in particulate biogenic Si flux, %opal, Si:POC, and Si:PIC at mesopelagic depths indicates a shift away from diatom-dominated export as a feasible explanation. Biogenic components accounted for 72% ± 16% of mass flux at 200 m, but were reduced to 34% ± 11% at 2,300 m, substituted by a residual (lithogenic) material. Total mass fluxes of biogenic components, including POC, were higher in the bathypelagic. Biomarkers and ∂13C values suggest both lateral advection and ice-rafted material contribute to benthic carbon input, although constraining their precise contribution remains challenging. The decadal time series was used to describe two end-members of catchment area conditions representing the maximum temperatures of Atlantic inflow water in 2005 at HGIV and high ice coverage and a meltwater stratification regime at HGN in 2007. Despite similar chlorophyll concentrations, bathypelagic POC flux, Si flux, Si:POC, and Si:PIC were higher and POC:PIC was lower in the high-ice/meltwater regime. Our findings suggest that ice concentration and associated meltwater regimes cause higher diatom flux. It is possible this will increase in the future Arctic as meltwater regimes increase, but it is likely to be a transient feature that will disappear when no ice remains

    Pelagic processes and vertical flux of particles: an overview of a long-term comparative study in the Norwegian Sea and Greenland Sea

    Get PDF
    Pelagic processes and their relation to vertical flux have been studied in the Norwegian and Greenland Seas since 1986. Results of long-term sediment trap deployments and adjoining process studies are presented, and the underlying methodological and conceptional background is discussed. Recent extension of these investigations at the Barents Sea continental slope are also presented. With similar conditions of input irradiation and nutrient conditions, the Norwegian and Greenland Seas exhibit comparable mean annual rates of new and total production. Major differences can be found between these regions, however, in the hydrographic conditions constraining primary production and in the composition and seasonal development of the plankton. This is reflected in differences in the temporal patterns of vertical particle flux in relation to new production in the euphotic zone, the composition of particles exported and in different processes leading to their modification in the mid-water layers. In the Norwegian Sea heavy grazing pressure during early spring retards the accumulation of phytoplankton stocks and thus a mass sedimentation of diatoms that is often associated with spring blooms. This, in conjunction with the further seasonal development of zooplankton populations, serves to delay the annual peak in sedimentation to summer or autumn. Carbonate sedimentation in the Norwegian Sea, however, is significantly higher than in the Greenland Sea, where physical factors exert a greater control on phytoplankton development and the sedimentation of opal is of greater importance. In addition to these comparative long-term studies a case study has been carried out at the continental slope of the Barents Sea, where an emphasis was laid on the influence of resuspension and across-slope lateral transport with an analysis of suspended and sedimented material

    The implications of the United Nations Paris Agreement on climate change for globally significant biodiversity areas

    Get PDF
    Climate change is already affecting species and their distributions. Distributional range changes have occurred and are projected to intensify for many widespread plants and animals, creating associated risks to many ecosystems. Here, we estimate the climate change-related risks to the species in globally significant biodiversity conservation areas over a range of climate scenarios, assessing their value as climate refugia. In particular, we quantify the aggregated benefit of countries’ emission reduction pledges (Intended Nationally Determined Contributions and Nationally Determined Contributions under the Paris Agreement), and also of further constraining global warming to 2 °C above pre-industrial levels, against an unmitigated scenario of 4.5 °C warming. We also quantify the contribution that can be made by using smart spatial conservation planning to facilitate some levels of autonomous (i.e. natural) adaptation to climate change by dispersal. We find that without mitigation, on average 33% of each conservation area can act as climate refugium (or 18% if species are unable to disperse), whereas if warming is constrained to 2 °C, the average area of climate refuges doubles to 67% of each conservation area (or, without dispersal, more than doubles to 56% of each area). If the country pledges are fulfilled, an intermediate estimate of 47–52% (or 31–38%, without dispersal) is obtained. We conclude that the Nationally Determined Contributions alone have important but limited benefits for biodiversity conservation, with larger benefits accruing if warming is constrained to 2 °C. Greater benefits would result if warming was constrained to well below 2 °C as set out in the Paris Agreement

    Varicella zoster virus glycoprotein C increases chemokine-mediated leukocyte migration

    Get PDF
    Varicella zoster virus (VZV) is a highly prevalent human pathogen that establishes latency in neurons of the peripheral nervous system. Primary infection causes varicella whereas reactivation results in zoster, which is often followed by chronic pain in adults. Following infection of epithelial cells in the respiratory tract, VZV spreads within the host by hijacking leukocytes, including T cells, in the tonsils and other regional lymph nodes, and modifying their activity. In spite of its importance in pathogenesis, the mechanism of dissemination remains poorly understood. Here we addressed the influence of VZV on leukocyte migration and found that the purified recombinant soluble ectodomain of VZV glycoprotein C (rSgC) binds chemokines with high affinity. Functional experiments show that VZV rSgC potentiates chemokine activity, enhancing the migration of monocyte and T cell lines and, most importantly, human tonsillar leukocytes at low chemokine concentrations. Binding and potentiation of chemokine activity occurs through the C-terminal part of gC ectodomain, containing predicted immunoglobulin-like domains. The mechanism of action of VZV rSgC requires interaction with the chemokine and signalling through the chemokine receptor. Finally, we show that VZV viral particles enhance chemokine-dependent T cell migration and that gC is partially required for this activity. We propose that VZV gC activity facilitates the recruitment and subsequent infection of leukocytes and thereby enhances VZ

    Calcineurin Selectively Docks with the Dynamin Ixb Splice Variant to Regulate Activity-dependent Bulk Endocytosis

    Get PDF
    Depolarization of nerve terminals stimulates rapid dephosphorylation of two isoforms of dynamin I (dynI), mediated by the calcium-dependent phosphatase calcineurin (CaN). Dephosphorylation at the major phosphorylation sites Ser-774/778 promotes a dynI-syndapin I interaction for a specific mode of synaptic vesicle endocytosis called activity-dependent bulk endocytosis (ADBE). DynI has two main splice variants at its extreme C terminus, long or short (dynIxa and dynIxb) varying only by 20 (xa) or 7 (xb) residues. Recombinant GST fusion proteins of dynIxa and dynIxb proline-rich domains (PRDs) were used to pull down interacting proteins from rat brain nerve terminals. Both bound equally to syndapin, but dynIxb PRD exclusively bound to the catalytic subunit of CaNA, which recruited CaNB. Binding of CaN was increased in the presence of calcium and was accompanied by further recruitment of calmodulin. Point mutations showed that the entire C terminus of dynIxb is a CaN docking site related to a conserved CaN docking motif (PXIXI(T/S)). This sequence is unique to dynIxb among all other dynamin variants or genes. Peptide mimetics of the dynIxb tail blocked CaN binding in vitro and selectively inhibited depolarization-evoked dynI dephosphorylation in nerve terminals but not of other dephosphins. Therefore, docking to dynIxb is required for the regulation of both dynI splice variants, yet it does not regulate the phosphorylation cycle of other dephosphins. The peptide blocked ADBE, but not clathrin-mediated endocytosis of synaptic vesicles. Our results indicate that Ca(2+) influx regulates assembly of a fully active CaN-calmodulin complex selectively on the tail of dynIxb and that the complex is recruited to sites of ADBE in nerve terminals

    Dominantly inherited micro-satellite instable cancer - the four Lynch syndromes - an EHTG, PLSD position statement

    Get PDF
    The recognition of dominantly inherited micro-satellite instable (MSI) cancers caused by pathogenic variants in one of the four mismatch repair (MMR) genes MSH2, MLH1, MSH6 and PMS2 has modified our understanding of carcinogenesis. Inherited loss of function variants in each of these MMR genes cause four dominantly inherited cancer syndromes with different penetrance and expressivities: the four Lynch syndromes. No person has an "average sex "or a pathogenic variant in an "average Lynch syndrome gene" and results that are not stratified by gene and sex will be valid for no one. Carcinogenesis may be a linear process from increased cellular division to localized cancer to metastasis. In addition, in the Lynch syndromes (LS) we now recognize a dynamic balance between two stochastic processes: MSI producing abnormal cells, and the host's adaptive immune system's ability to remove them. The latter may explain why colonoscopy surveillance does not reduce the incidence of colorectal cancer in LS, while it may improve the prognosis. Most early onset colon, endometrial and ovarian cancers in LS are now cured and most cancer related deaths are after subsequent cancers in other organs. Aspirin reduces the incidence of colorectal and other cancers in LS. Immunotherapy increases the host immune system's capability to destroy MSI cancers. Colonoscopy surveillance, aspirin prevention and immunotherapy represent major steps forward in personalized precision medicine to prevent and cure inherited MSI cancer
    • 

    corecore