1,184 research outputs found

    From Wild West to the Godfather: Enforcement Market Structure

    Get PDF
    Weak states enable private enforcement but it does not always fade away in the presence of strong states. We develop a general equilibrium model of the market organization of enforcers (self-enforcers, competitive specialized enforcers or monopoly) who defend endowments from predators. We provide conditions under which a Mafia emerges, persists and is stable. Mafias are most likely to emerge at intermediate stages of economic development. Private enforcers might provide better enforcement to the rich than would a welfare-maximizing state - hence the State may find it difficult to replace the Mafia or competitive private enforcers.

    Cosmic Ray acceleration and Balmer emission from SNR 0509-67.5

    Full text link
    Context: Observation of Balmer lines from the region around the forward shock of supernova remnants may provide precious information on the shock dynamics and on the efficiency of particle acceleration at the shock. Aims: We calculate the Balmer line emission and the shape of the broad Balmer line for parameter values suitable for SNR 0509-67.5, as a function of the cosmic ray acceleration efficiency and of the level of thermal equilibration between electrons and protons behind the shock. This calculation aims at using the width of the broad Balmer line emission to infer the cosmic ray acceleration efficiency in this remnant. Methods: We use the recently developed non-linear theory of diffusive shock acceleration in the presence of neutrals. The semi-analytical approach that we developed includes a description of magnetic field amplification as due to resonant streaming instability, the dynamical reaction of both accelerated particles and turbulent magnetic field on the shock, and all channels of interaction between neutral atoms and background plasma that change the shock dynamics. Results: We achieve a quantitative assessment of the CR acceleration efficiency in SNR 0509-67.5 as a function of the shock velocity and different levels of electron-proton thermalization in the shock region. If the shock moves faster than ~4500 km/s, one can conclude that particle acceleration must be taking place with efficiency of several tens of percent. For lower shock velocity the evidence for particle acceleration becomes less clear because of the uncertainty in the electron-ion equilibration downstream. We also discuss the role of future measurements of the narrow Balmer line.Comment: 7 pages, 5 figure. Accepted for publication in Astronomy & Astrophysic

    Broad Balmer line emission and cosmic ray acceleration efficiency in supernova remnant shocks

    Full text link
    Balmer emission may be a powerful diagnostic tool to test the paradigm of cosmic ray (CR) acceleration in young supernova remnant (SNR) shocks. The width of the broad Balmer line is a direct indicator of the downstream plasma temperature. In case of efficient particle acceleration an appreciable fraction of the total kinetic energy of the plasma is channeled into CRs, therefore the downstream temperature decreases and so does the broad Balmer line width. This width also depends on the level of thermal equilibration between ions and neutral hydrogen atoms in the downstream. Since in general in young SNR shocks only a few charge exchange (CE) reactions occur before ionization, equilibration between ions and neutrals is not reached, and a kinetic description of the neutrals is required in order to properly compute Balmer emission. We provide a method for the calculation of Balmer emission using a self-consistent description of the shock structure in the presence of neutrals and CRs. We use a recently developed semi-analytical approach, where neutral particles, ionized plasma, accelerated particles and magnetic fields are all coupled together through the mass, momentum and energy flux conservation equations. The distribution of neutrals is obtained from the full Boltzmann equation in velocity space, coupled to Maxwellian ions through ionization and CE processes. The computation is also improved with respect to previous work thanks to a better approximation for the atomic interaction rates. We find that for shock speeds >2500km/s the distribution of broad neutrals never approaches a Maxwellian and its moments differ from those of the ionized component. These differences reflect into a smaller FWHM than predicted in previous calculations, where thermalization was assumed. The method presented here provides a realistic estimate of particle acceleration efficiency in Balmer dominated shocks.Comment: 6 pages, 3 figures. Accepted for publication in Astronomy & Astrophysic

    Cosmic Ray acceleration and Balmer emission from RCW 86 (G315.4-2.3)

    Get PDF
    Context. Observation of Balmer lines from the region around the forward shock of supernova remnants (SNR) may provide valuable information on the shock dynamics and the efficiency of particle acceleration at the shock. Aims. We calculated the Balmer line emission and the shape of the broad Balmer line for parameter values suitable for SNR RCW 86 (G315.4-2.3) as a function of the cosmic-ray (CR) acceleration efficiency and of the level of thermal equilibration between electrons and protons behind the shock. This calculation aims at using the width of the broad Balmer-line emission to infer the CR acceleration efficiency in this remnant. Methods. We used the recently developed nonlinear theory of diffusive shock-acceleration in the presence of neutrals. The semianalytical approach we developed includes a description of magnetic field amplification as due to resonant streaming instability, the dynamical reaction of accelerated particles and the turbulent magnetic field on the shock, and all channels of interaction between neutral hydrogen atoms and background ions that are relevant for the shock dynamics. Results. We derive the CR acceleration efficiency in the SNR RCW 86 from the Balmer emission. Since our calculation used recent measurements of the shock proper motion, the results depend on the assumed distance to Earth. For a distance of 2 kpc the measured width of the broad Balmer line is compatible with the absence of CR acceleration. For a distance of 2.5 kpc, which is a widely used value in current literature, a CR acceleration efficiency of 5-30% is obtained, depending upon the electron-ion equilibration and the ionization fraction upstream of the shock. By combining information on Balmer emission with the measured value of the downstream electron temperature, we constrain the CR acceleration efficiency to be ~20%.Comment: 7 pages, 6 figures. Accepted for publication in A&A (minor changes to match the published version

    Fiscal consolidation in a low inflation environment: pay cuts versus lost jobs

    Get PDF
    We construct a model of a monetary union to study fiscal consolidation in the Periphery of the euro area, through cuts in public sector wages or hiring when the nominal interest rate is constrained at its lower bound. Consolidation induces a positive wealth effect that increases demand, as well as a reallocation of workers towards the private sector, which together boost private activity. However, in a low inflation environment, demand is suppressed and the private sector is not able to absorb the additional workers. Comparing the two instruments, cuts in public hiring increase unemployment persistently in this environment, while wage cuts reduce it. Regions with higher mobility of labour between the two sectors are able to consolidate more effectively. Price flexibility is also key at the zero lower bound: for a higher degree of price rigidity in the Periphery, consolidation becomes harder to achieve. Consolidations can be self-defeating when the public good is productive, or a complement to private consumption

    Planar channeling and quasichanneling oscillations in a bent crystal

    Full text link
    Particles passing through a crystal under planar channeling experience transverse oscillations in their motion. As channeled particles approach the atomic planes of a crystal, they are likely to be dechanneled. This effect was used in ion-beam analysis with MeV energy. We studied this effect in a bent crystal for positive and negative particles within a wide range of energies in sight of application of such crystals at accelerators. We found the conditions for the appearance or not of channeling oscillations. Indeed a new kind of oscillations, strictly related to the motion of over-barrier particles, i.e. quasichanneling particles, has been predicted. Such oscillations, named planar quasichanneling oscillations, possess a different nature than channeling oscillations. Through computer simulation, we studied this effect and provided a theoretical interpretation for them. We show that channeling oscillations can be observed only for positive particles while quasichanneling oscillations can exist for particles with either sign. The conditions for experimental observation of channeling and quasichanneling oscillations at existing accelerators with available crystal has been found and optimized.Comment: 25 pages, 11 figure

    Precursor Plerionic Activity and High Energy Gamma-Ray Emission in the Supranova Model of Gamma-Ray Bursts

    Get PDF
    The supranova model of gamma-ray bursts (GRBs), in which the GRB event is preceded by a supernova (SN) explosion by a few months to years, has recently gained support from Fe line detections in X-ray afterglows. A crucial ingredient of this model yet to be studied is the fast-rotating pulsar that should be active during the time interval between the SN and the GRB, driving a powerful wind and a luminous plerionic nebula. We discuss some observational consequences of this precursor plerion, which should provide important tests for the supranova model: 1) the fragmentation of the outlying SN ejecta material by the plerion and its implications for Fe line emission; and 2) the effect of inverse Compton cooling and emission in the GRB external shock due to the plerion radiation field. The plerion-induced inverse Compton emission can dominate in the GeV-TeV energy range during the afterglow, being detectable by GLAST from redshifts z≲1.5z \lesssim 1.5 and distinguishable from self-Compton emission by its spectrum and light curve. The prospects for direct detection and identification of the precursor plerion emission are also briefly considered.Comment: ApJ vol.583, in pres

    The nature of the X-ray halo of the plerion G21.5-0.9 unveiled by XMM-Newton and Chandra

    Full text link
    The nature of the radio-quiet X-ray halo around the plerionic SNR G21.5-0.9 is under debate. On the basis of spatial and spectral analysis of a large Chandra and XMM-Newton dataset of this source, we have developed a self-consistent scenario which explains all the observational features. We found that the halo is composed by diffuse extended emission due to dust scattering of X-rays from the plerion, by a bright limb which traces particle acceleration in the fast forward shock of the remnant, and by a bright spot (the ``North Spur'') which may be a knot of ejecta in adiabatic expansion. By applying a model of interaction between the PWN, the SNR and supernova environment, we argue that G21.5-0.9 progenitor may be of Type IIP or Ib/Ic, and that the remnant may be young (200-1000 yr).Comment: 11 pages, 10 figures, accepted by A&A, also avalaible at http://www.astropa.unipa.it/Library/OAPA_preprints/fb2870.ps.g
    • …
    corecore