Balmer emission may be a powerful diagnostic tool to test the paradigm of
cosmic ray (CR) acceleration in young supernova remnant (SNR) shocks. The width
of the broad Balmer line is a direct indicator of the downstream plasma
temperature. In case of efficient particle acceleration an appreciable fraction
of the total kinetic energy of the plasma is channeled into CRs, therefore the
downstream temperature decreases and so does the broad Balmer line width. This
width also depends on the level of thermal equilibration between ions and
neutral hydrogen atoms in the downstream. Since in general in young SNR shocks
only a few charge exchange (CE) reactions occur before ionization,
equilibration between ions and neutrals is not reached, and a kinetic
description of the neutrals is required in order to properly compute Balmer
emission.
We provide a method for the calculation of Balmer emission using a
self-consistent description of the shock structure in the presence of neutrals
and CRs. We use a recently developed semi-analytical approach, where neutral
particles, ionized plasma, accelerated particles and magnetic fields are all
coupled together through the mass, momentum and energy flux conservation
equations. The distribution of neutrals is obtained from the full Boltzmann
equation in velocity space, coupled to Maxwellian ions through ionization and
CE processes. The computation is also improved with respect to previous work
thanks to a better approximation for the atomic interaction rates. We find that
for shock speeds >2500km/s the distribution of broad neutrals never approaches
a Maxwellian and its moments differ from those of the ionized component. These
differences reflect into a smaller FWHM than predicted in previous
calculations, where thermalization was assumed. The method presented here
provides a realistic estimate of particle acceleration efficiency in Balmer
dominated shocks.Comment: 6 pages, 3 figures. Accepted for publication in Astronomy &
Astrophysic