79 research outputs found

    The impact of long-lasting microbial larvicides in reducing malaria transmission and clinical malaria incidence: study protocol for a cluster randomized controlled trial.

    Get PDF
    BACKGROUND: The massive scale-up of insecticide-treated nets (ITNs) and indoor residual spraying (IRS) has led to a substantial increase in malaria vector insecticide resistance as well as in increased outdoor transmission, both of which hamper the effectiveness and efficiency of ITN and IRS. Long-lasting microbial larvicide can be a cost-effective new supplemental intervention tool for malaria control. METHODS/DESIGN: We will implement the long-lasting microbial larvicide intervention in 28 clusters in two counties in western Kenya. We will test FourStar controlled release larvicide (6 % by weight Bacillus thuringiensis israelensis and 1 % Bacillus sphaerius) by applying FourStar controlled release granule formulation, 90-day briquettes, and 180-day briquettes in different habitat types. The primary endpoint is clinical malaria incidence rate and the secondary endpoint is malaria vector abundance and transmission intensity. The intervention will be conducted as a two-step approach. First, we will conduct a four-cluster trial (two clusters per county, with one of the two clusters randomly assigned to the intervention arm) to optimize the larvicide application scheme. Second, we will conduct an open-label, cluster-randomized trial to evaluate the effectiveness and cost-effectiveness of the larvicide. Fourteen clusters in each county will be assigned to intervention (treatment) or no intervention (control) by a block randomization on the basis of clinical malaria incidence, vector density, and human population size per site. We will treat each treatment cluster with larvicide for three rounds at 4-month intervals, followed by no treatment for the following 8 months. Next, we will switch the control and treatment sites. The former control sites will receive three rounds of larvicide treatment at appropriate time intervals, and former treatment sites will receive no larvicide. We will monitor indoor and outdoor vector abundance using CO2-baited CDC light traps equipped with collection bottle rotators. Clinical malaria data will be aggregated from government-run malaria treatment centers. DISCUSSION: Since current first-line vector intervention methods do not target outdoor transmission and will select for higher insecticide resistance, new methods beyond bed nets and IRS should be considered. Long-lasting microbial larviciding represents a promising new tool that can target both indoor and outdoor transmission and alleviate the problem of pyrethroid resistance. It also has the potential to diminish costs by reducing larvicide reapplications. If successful, it could revolutionize malaria vector control in Africa, just as long-lasting bed nets have done. TRIAL REGISTRATION: U.S. National Institute of Health, study ID NCT02392832 . Registered on 3 February 2015

    Durability associated efficacy of long-lasting insecticidal nets after five years of household use

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Long-lasting insecticidal nets (LLINs) have been strongly advocated for use to prevent malaria in sub-Saharan Africa and have significantly reduced human-vector contact. PermaNet<sup>® </sup>2.0 is among the five LLINs brands which have been given full approval by the WHO Pesticide Evaluation Scheme (WHOPES). The LLINs are expected to protect the malaria endemic communities, but a number of factors within the community can affect their durability and efficacy. This study evaluated the durability, efficacy and retention of PermaNet<sup>® </sup>2.0 after five years of use in a Tanzanian community.</p> <p>Method</p> <p>Two to three day- old non blood-fed female mosquitoes from an insectary susceptible colony (<it>An. gambiae </it>s.s, this colony was established at TPRI from Kisumu, Kenya in 1992) and wild mosquito populations (<it>An. arabiensis </it>and <it>Culex quinquefasciatus</it>) were used in cone bioassay tests to assess the efficacy of mosquito nets.</p> <p>Findings</p> <p>The knockdown effect was recorded after three minutes of exposure, and mortality was recorded after 24 hours post-exposure. Mortality of <it>An. gambiae </it>s.s from insectary colony was 100% while <it>An. arabiensis </it>and <it>Cx.quinquefasciatus </it>wild populations had reduced mortality. Insecticide content of the new (the bed net of the same brand but never used before) and used PermaNet<sup>® </sup>2.0 was determined using High Performance Liquid Chromatography (HPLC).</p> <p>Conclusion</p> <p>The results of this study suggest that, in order to achieve maximum protection against malaria, public health education focusing on bed net use and maintenance should be incorporated into the mass distribution of nets in communities.</p

    High Prevalence of Malaria in Zambezia, Mozambique: The Protective Effect of IRS versus Increased Risks Due to Pig-Keeping and House Construction

    Get PDF
    BACKGROUND: African countries are scaling up malaria interventions, especially insecticide treated nets (ITN) and indoor residual spraying (IRS), for which ambitious coverage targets have been set. In spite of these efforts infection prevalence remains high in many parts of the continent. This study investigated risk factors for malaria infection in children using three malaria indicator surveys from Zambezia province, Mozambique. The impact of IRS and ITNs, the effects of keeping farm animals and of the construction material of roofs of houses and other potential risk factors associated with malaria infection in children were assessed. METHODS: Cross-sectional community-based surveys were conducted in October of 2006, 2007 and 2008. A total of 8338 children (ages 1-15 years) from 2748 households were included in the study. All children were screened for malaria by rapid diagnostic tests. Caregiver interviews were used to assess household demographic and wealth characteristics and ITN and IRS coverage. Associations between malaria infection, vector control interventions and potential risk factors were assessed. RESULTS: Overall, the prevalence of malaria infection was 47.8% (95%CI: 38.7%-57.1%) in children 1-15 years of age, less than a quarter of children (23.1%, 95%CI: 19.1%-27.6%) were sleeping under ITN and almost two thirds were living in IRS treated houses (coverage 65.4%, 95%CI: 51.5%-77.0%). Protective factors that were independently associated with malaria infection were: sleeping in an IRS house without sleeping under ITN (Odds Ratio (OR)= 0.6; 95%CI: 0.4-0.9); additional protection due to sleeping under ITN in an IRS treated house (OR = 0.5; 95%CI: 0.3-0.7) versus sleeping in an unsprayed house without a ITN; and parental education (primary/secondary: OR = 0.6; 95%CI: 0.5-0.7) versus parents with no education. Increased risk of infection was associated with: current fever (OR = 1.2; 95%CI: 1.0-1.5) versus no fever; pig keeping (OR = 3.2; 95%CI: 2.1-4.9) versus not keeping pigs; living in houses with a grass roof (OR = 1.7; 95%CI: 1.3-2.4) versus other roofing materials and bigger household size (8-15 people: OR = 1.6; 95%CI: 1.3-2.1) versus small households (1-4 persons). CONCLUSION: Malaria infection among children under 15 years of age in Zambezia remained high but conventional malaria vector control methods, in particular IRS, provided effective means of protection. Household ownership of farm animals, particularly pigs, and living in houses with a grass roof were independently associated with increased risk of infection, even after allowing for household wealth. To reduce the burden of malaria, national control programs need to ensure high coverage of effective IRS and promote the use of ITNs, particularly in households with elevated risks of infection, such as those keeping farm animals, and those with grass roofs

    Topography and malaria transmission heterogeneity in western Kenya highlands: prospects for focal vector control

    Get PDF
    BACKGROUND: Recent resurgence of malaria in the highlands of Western Kenya has called for a more comprehensive understanding of the previously neglected complex highland vector ecology. Besides other drivers of malaria epidemiology, topography is likely to have a major effect on spatial vector and parasite distribution. The aim of this study was to determine the effects of topography on malaria spatial vector distribution and parasite prevalence. METHODOLOGY: Indoor resting adult malaria vectors and blood parasites were collected in three villages along a 4 km transect originating from the valley bottom and ending at the hilltop for 13 months. Members of the Anopheles gambiae complex were identified by PCR. Blood parasites were collected from children 6–13 years old and densities categorized by site of home location and age of the children. RESULTS: Ninety eight percent (98%) of An. gambiae s.s. and (99%) Anopheles funestus were collected in houses located at the edge of the valley bottom, whereas 1% of An. gambiae s.s. were collected at mid hill and at the hilltop respectively. No An. funestus were collected at the hilltop. Malaria prevalence was 68% at the valley bottom, 40.2% at mid hill and 26.7% at the hilltop. Children aged six years and living at the edge of the valley bottom had an annual geometric mean number of 66.1 trophozoites for every 200 white blood cells, while those living at mid-hill had a mean of 84.8, and those living at hilltop had 199.5 trophozoites. CONCLUSION: Malaria transmission in this area is mainly confined to the valley bottom. Effective vector control could be targeted at the foci. However, the few vectors observed at mid-hill maintained a relatively high prevalence rate. The higher variability in blood parasite densities and their low correlation with age in children living at the hilltop suggests a lower stability of transmission than at the mid-hill and valley bottom

    Modelling malaria treatment practices in Bangladesh using spatial statistics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria treatment-seeking practices vary worldwide and Bangladesh is no exception. Individuals from 88 villages in Rajasthali were asked about their treatment-seeking practices. A portion of these households preferred malaria treatment from the National Control Programme, but still a large number of households continued to use drug vendors and approximately one fourth of the individuals surveyed relied exclusively on non-control programme treatments. The risks of low-control programme usage include incomplete malaria treatment, possible misuse of anti-malarial drugs, and an increased potential for drug resistance.</p> <p>Methods</p> <p>The spatial patterns of treatment-seeking practices were first examined using hot-spot analysis (Local Getis-Ord Gi statistic) and then modelled using regression. Ordinary least squares (OLS) regression identified key factors explaining more than 80% of the variation in control programme and vendor treatment preferences. Geographically weighted regression (GWR) was then used to assess where each factor was a strong predictor of treatment-seeking preferences.</p> <p>Results</p> <p>Several factors including tribal affiliation, housing materials, household densities, education levels, and proximity to the regional urban centre, were found to be effective predictors of malaria treatment-seeking preferences. The predictive strength of each of these factors, however, varied across the study area. While education, for example, was a strong predictor in some villages, it was less important for predicting treatment-seeking outcomes in other villages.</p> <p>Conclusion</p> <p>Understanding where each factor is a strong predictor of treatment-seeking outcomes may help in planning targeted interventions aimed at increasing control programme usage. Suggested strategies include providing additional training for the Building Resources across Communities (BRAC) health workers, implementing educational programmes, and addressing economic factors.</p

    Determinants of Use of Insecticide Treated Nets for the Prevention of Malaria in Pregnancy: Jinja, Uganda

    Get PDF
    One established means of preventing the adverse consequences of malaria during pregnancy is sleeping under an insecticide treated net (ITN) throughout pregnancy. Despite increased access to this intervention over time, consistent ITN use during pregnancy remains relatively uncommon in sub-Saharan Africa.We sought to identify determinants of ITN use during pregnancy. Utilizing a population-based random sample, we interviewed 500 women living in Jinja, Uganda, who had been pregnant in the past year. ITN ownership at the start of pregnancy was reported by 359 women (72%) and 28 women (20%) acquired an ITN after the first trimester of pregnancy. Among 387 ITN owners, 73% reported either always sleeping under the ITN during all trimesters of pregnancy, or after acquiring their net. Owning more than 1 net was slightly associated with always sleeping under an ITN during pregnancy (RR: 1.13; 95% CI: 1.00, 1.28). Women who always slept under an ITN during pregnancy were more likely to be influenced by an advertisement on the radio/poster than being given an ITN free of charge (RR: 1.48; 95% CI: 1.24, 1.76). No differences were found between other socio-demographic factors, pregnancy history, ANC use or socio-cultural factors.While self-reported ITN ownership and use was common throughout pregnancy, we were unable to pinpoint why a sizable fraction of Ugandan women did not always adhere to recommendations for use of an ITN during pregnancy. More data are needed on the capacity of individual households to support the installation of ITNs which may provide insight into interventions targeted at improving the convenience and adherence of daily ITN use

    Entomological aspects and the role of human behaviour in malaria transmission in a highland region of the Republic of Yemen

    Get PDF
    © 2016 Al-Eryani et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article

    Insecticide-treated net (ITN) ownership, usage, and malaria transmission in the highlands of western Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insecticide-treated bed nets (ITNs) are known to be highly effective in reducing malaria morbidity and mortality. However, usage varies among households, and such variations in actual usage may seriously limit the potential impact of nets and cause spatial heterogeneity on malaria transmission. This study examined ITN ownership and underlying factors for among-household variation in use, and malaria transmission in two highland regions of western Kenya.</p> <p>Methods</p> <p>Cross-sectional surveys were conducted on ITN ownership (possession), compliance (actual usage among those who own ITNs), and malaria infections in occupants of randomly sampled houses in the dry and the rainy seasons of 2009.</p> <p>Results</p> <p>Despite ITN ownership reaching more than 71%, compliance was low at 56.3%. The compliance rate was significantly higher during the rainy season compared with the dry season (62% vs. 49.6%). Both malaria parasite prevalence (11.8% vs. 5.1%) and vector densities (1.0 vs.0.4 female/house/night) were significantly higher during the rainy season than during the dry season. Other important factors affecting the use of ITNs include: a household education level of at least primary school level, significantly high numbers of nuisance mosquitoes, and low indoor temperatures. Malaria prevalence in the rainy season was about 30% lower in ITN users than in non-ITN users, but this percentage was not significantly different during the dry season.</p> <p>Conclusion</p> <p>In malaria hypo-mesoendemic highland regions of western Kenya, the gap between ITNownership and usage is generally high with greater usage recorded during the high transmission season. Because of the low compliance among those who own ITNs, there is a need to sensitize households on sustained use of ITNs in order to optimize their role as a malaria control tool.</p
    corecore