1,748 research outputs found
Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.Peer reviewe
Phase composition and transformations in magnetron-sputtered (Al,V)2O3 coatings
Coatings of (Al1-xVx)2O3, with x ranging from 0 to 1, were deposited by
pulsed DC reactive sputter deposition on Si(100) at a temperature of 550
{\deg}C. XRD showed three different crystal structures depending on V-metal
fraction in the coating: {\alpha}-V2O3 rhombohedral structure for 100 at.% V, a
defect spinel structure for the intermediate region, 63 - 42 at.% V. At lower
V-content, 18 and 7 at.%, a gamma-alumina-like solid solution was observed,
shifted to larger d-spacing compared to pure {\gamma}-Al2O3. The microstructure
changes from large columnar faceted grains for {\alpha}-V2O3 to smaller
equiaxed grains when lowering the vanadium content toward pure {\gamma}-Al2O3.
Annealing in air resulted in formation of V2O5 crystals on the surface of the
coating after annealing to 500 {\deg}C for 42 at.% V and 700 {\deg}C for 18
at.% V metal fraction respectively. The highest thermal stability was shown for
pure {\gamma}-Al2O3-coating, which transformed to {\alpha}-Al2O3 after
annealing to 1100{\deg} C. Highest hardness was observed for the Al-rich
oxides, ~24 GPa. The latter decreased with increasing V-content, larger than 7
at.% V metal fraction. The measured hardness after annealing in air decreased
in conjunction with the onset of further oxidation of the coatings
A comparison of the DNA binding and bending capacities and the oligomeric states of the immunity repressors of heteroimmune coliphages P2 and WPhi
Bacteriophages P2 and WΦ are heteroimmune members of the P2-like family of temperate Escherichia coli phages. Temperate phages can grow lytically or form lysogeny after infection. A transcriptional switch that contains two con-vergent promoters, Pe and Pc, and two repressors regulate what life mode to enter. The immunity repressor C is the first gene of the lysogenic operon, and it blocks the early Pe promoter. In this work, some characteristics of the C proteins of P2 and WΦ are compared. An in vivo genetic analysis shows that WΦ C, like P2 C, has a strong dimerization activity in the absence of its DNA target. Both C proteins recognize two directly repeated sequences, termed half-sites and a strong bending is induced in the respective DNA target upon binding. P2 C is unable to bind to one half-site as opposed to WΦ, but both half-sites are required for repression of WΦ Pe. A reduction from three to two helical turns between the centers of the half-sites in WΦ has no significant effect on the capacity to repress Pe. However, the protein–DNA complexes formed differ, as determined by electrophoretic mobility shift experiments. A difference in spontaneous phage production is observed in isogenic lysogens
Creep in oak material from the Vasa ship: verification of linear viscoelasticity and identification of stress thresholds
Creep deformation is a general problem for large wooden structures, and in particular for shipwrecks in museums. In this study, experimental creep data on the wooden cubic samples from the Vasa ship have been analysed to confirm the linearity of the viscoelastic response in the directions where creep was detectable (T and R directions). Isochronous stress-strain curves were derived for relevant uniaxial compressive stresses within reasonable time spans. These curves and the associated creep compliance values justify that it is reasonable to assume a linear viscoelastic behaviour within the tested ranges, given the high degree of general variability. Furthermore, the creep curves were fitted with a one-dimensional standard linear solid model, and although the rheological parameters show a fair amount of scatter, they are candidates as input parameters in a numerical model to predict creep deformations. The isochronous stress-strain relationships were used to define a creep threshold stress below which only negligible creep is expected. These thresholds ranges were 0.3-0.5 MPa in the R direction and 0.05-0.2 MPa in the T direction
- …