22 research outputs found

    Genome-wide association study and scan for signatures of selection point to candidate genes for body temperature maintenance under the cold stress in Siberian cattle populations

    Get PDF
    Design of new highly productive livestock breeds, well-adapted to local climatic conditions is one of the aims of modern agriculture and breeding. The genetics underlying economically important traits in cattle are widely studied, whereas our knowledge of the genetic mechanisms of adaptation to local environments is still scarce. To address this issue for cold climates we used an integrated approach for detecting genomic intervals related to body temperature maintenance under acute cold stress. Our approach combined genome-wide association studies (GWAS) and scans for signatures of selection applied to a cattle population (Hereford and Kazakh Whiteheaded beef breeds) bred in Siberia. We utilized the GGP HD150K DNA chip containing 139,376 single nucleotide polymorphism markers

    Anandamide Capacitates Bull Spermatozoa through CB1 and TRPV1 Activation

    Get PDF
    Anandamide (AEA), a major endocannabinoid, binds to cannabinoid and vanilloid receptors (CB1, CB2 and TRPV1) and affects many reproductive functions. Nanomolar levels of anandamide are found in reproductive fluids including mid-cycle oviductal fluid. Previously, we found that R(+)-methanandamide, an anandamide analogue, induces sperm releasing from bovine oviductal epithelium and the CB1 antagonist, SR141716A, reversed this effect. Since sperm detachment may be due to surface remodeling brought about by capacitation, the aim of this paper was to investigate whether anandamide at physiological concentrations could act as a capacitating agent in bull spermatozoa. We demonstrated that at nanomolar concentrations R(+)-methanandamide or anandamide induced bull sperm capacitation, whereas SR141716A and capsazepine (a TRPV1 antagonist) inhibited this induction. Previous studies indicate that mammalian spermatozoa possess the enzymatic machinery to produce and degrade their own AEA via the actions of the AEA-synthesizing phospholipase D and the fatty acid amide hydrolase (FAAH) respectively. Our results indicated that, URB597, a potent inhibitor of the FAAH, produced effects on bovine sperm capacitation similar to those elicited by exogenous AEA suggesting that this process is normally regulated by an endogenous tone. We also investigated whether anandamide is involved in bovine heparin-capacitated spermatozoa, since heparin is a known capacitating agent of bovine sperm. When the spermatozoa were incubated in the presence of R(+)-methanandamide and heparin, the percentage of capacitated spermatozoa was similar to that in the presence of R(+)-methanandamide alone. The pre-incubation with CB1 or TRPV1 antagonists inhibited heparin-induced sperm capacitation; moreover the activity of FAAH was 30% lower in heparin-capacitated spermatozoa as compared to control conditions. This suggests that heparin may increase endogenous anandamide levels. Our findings indicate that anandamide induces sperm capacitation through the activation of CB1 and TRPV1 receptors and could be involved in the same molecular pathway as heparin in bovines

    Effect of chronic THC administration in the reproductive organs of male mice, spermatozoa and in vitro fertilization

    No full text
    The increased use of cannabis as a therapeutic drug in recent years has raised some concerns due to its potential effects on reproductive health. With regards to the male, the endocannabinoid system is involved in the spermatogenesis and in the sperm function. The chronic use of tetrahidrocannabinol (THC) has been associated with sperm anomalies, decreased sperm motility and structural changes in the testis. However, whether THC affects sperms ability to fertilize and to generate embryos remains unclear. The aim of this study was to evaluate this effect using a mice model of THC chronic treatment. For this purpose, a chronic treatment with THC was carried out. Mice were randomly allocated into two groups: an experimental group treated with a daily dose of 10 mg/kg-body weight THC for a period of 30 days and a control group treated with a vehicle. The THC-mice cortex showed a significant decrease of mRNA of Cnr1 compared to control-mice while, in the testis, the expression of Cnr1 was not affected. The weight of testis and epididymis and the histological analysis did not show any change between groups. On the other hand, no changes were observed in the sperm motility or the sperm concentration. The chronic use of THC did not generate any methylation change in the three CpG regions of Cnn1 analysed, neither in the brain nor in the embryos generated by in vitro fertilization (IVF). Finally, the embryo production by IVF was no different using spermatozoa from both THC and control mice. This work contradicts the belief that THC consumption has a negative effect on male reproductive processes

    Exocannabinoids effect on in vitro bovine oocyte maturation via activation of AKT and ERK1/2

    No full text
    Endocannabinoids are known to mediate practically all reproductive events in mammals; however, little is known about their role in oocyte maturation. Through RT-PCR and immunocytochemistry, this study confirms the presence of CB1 and CB2 cannabinoid receptors in bovine oocytes and shows how exposure to the exogenous cannabinoids HU-210 and THC during their in vitro maturation (IVM) activates the phosphorylation of AKT and ERK1/2 proteins associated with the resumption of meiosis. Although supplementation with HU-210 or THC during IVM did not increase blastocyst yields, the expression of interferon tau (IFNτ) and gap junction alpha-1 protein (GJA1) was enhanced at the blastocyst stage. Our data suggest that cannabinoid agonists may be useful IVM supplements as their presence during oocyte maturation upregulates the expression in blastocysts of key genes for embryo quality. © 2016 Society for Reproduction and Fertility

    CB1 cannabinoid receptor drives oocyte maturation and embryo development via PI3K/Akt and MAPK pathways

    No full text
    Endocannabinoids have been recognized as mediators of practically all reproductive events in mammals. However, little is known about the role of this system in oocyte maturation. In a mouse model, we observed that activation of cannabinoid receptor 1 (CB1) during in vitro oocyte maturation modulated the phosphorylation status of Akt and ERK1/2 and enhanced the subsequent embryo production. In the absence of CB1, in vivo oocyte maturation was impaired and embryo development delayed. Cannabinoid receptor 2 (CB2) was unable to rescue these effects. Finally, we confirmed abnormal oocyte maturation rather than impaired embryonic transport through the oviduct in CB1 knockouts. Our data suggest that cannabinoid agonists may be useful in vitro maturation supplements. For in vitro fertilization patients intolerant to gonadotropins, this could be a promising and only option.-López-Cardona, A. P., Pérez-Cerezales, S., Fernández-González, R., Laguna-Barraza, R., Pericuesta, E., Agirregoitia, N., Gutiérrez-Adán, A., Agirregoitia, E. CB1 cannabinoid receptor drives oocyte maturation and embryo development via PI3K/Akt and MAPK pathways

    Nobiletin enhances the development and quality of bovine embryos in vitro during two key periods of embryonic genome activation

    Get PDF
    In vitro culture can alter the development and quality of bovine embryos. Therefore, we aimed to evaluate whether nobiletin supplementation during EGA improves embryonic development and blastocyst quality and if it affects PI3K/AKT signaling pathway. In vitro zygotes were cultured in SOF + 5% FCS (Control) or supplemented with 5, 10 or 25 µM nobiletin (Nob5, Nob10, Nob25) or with 0.03% dimethyl-sulfoxide (CDMSO) during minor (2 to 8-cell stage; MNEGA) or major (8 to 16-cell stage; MJEGA) EGA phase. Blastocyst yield on Day 8 was higher in Nob5 (42.7 ± 1.0%) and Nob10 (44.4 ± 1.3%) for MNEGA phase and in Nob10 (61.0 ± 0.8%) for MJEGA phase compared to other groups. Mitochondrial activity was higher and lipid content was reduced in blastocysts produced with nobiletin, irrespective of EGA phase. The mRNA abundance of CDK2, H3-3B, H3-3A, GPX1, NFE2L2 and PPARα transcripts was increased in 8-cells, 16-cells and blastocysts from nobiletin groups. Immunofluorescence analysis revealed immunoreactive proteins for p-AKT forms (Thr308 and Ser473) in bovine blastocysts produced with nobiletin. In conclusion, nobiletin supplementation during EGA has a positive effect on preimplantation bovine embryonic development in vitro and corroborates on the quality improvement of the produced blastocysts which could be modulated by the activation of AKT signaling pathway.This work was funded by the Spanish Ministry of Science and Innovation (PID2019-111641RB-I00 to D.R. and RTI2018-093548-B-I00 to A.G.-A). Y.N.C. was supported by a predoctoral fellowship from the Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación (Convocatoria abierta 2017, SENESCYT-Ecuador). C.L.V.L. was supported by a BPE grant from Fundação de Amparo à Pesquisa do Estado de São Paulo, Brazil (FAPESP #2017/20339-3).Peer reviewe

    Biased agonism of three different cannabinoid receptor agonists in mouse brain cortex

    Get PDF
    Cannabinoid receptors are able to couple to different families of G proteins when activated by an agonist drug. It has been suggested that different intracellular responses may be activated depending on the ligand. The goal of the present study was to characterize the pattern of G protein subunit stimulation triggered by three different cannabinoid ligands, Δ9-THC, WIN55212-2, and ACEA in mouse brain cortex. Stimulation of the [35S]GTPγS binding coupled to specific immunoprecipitation with antibodies against different subtypes of G proteins (Gαi1, Gαi2, Gαi3, Gαo, Gαz, Gαs, Gαq/11, and Gα12/13), in the presence of Δ9-THC, WIN55212-2 and ACEA (submaximal concentration 10 μM) was determined by scintillation proximity assay (SPA) technique in mouse cortex of wild type, CB1 knock-out, CB2 knock-out and CB1/CB2 double knock-out mice. Results show that, in mouse brain cortex, cannabinoid agonists are able to significantly stimulate not only the classical inhibitory Gαi/o subunits but also other G subunits like Gαz, Gαq/11, and Gα12/13. Moreover, the specific pattern of G protein subunit activation is different depending on the ligand. In conclusion, our results demonstrate that, in mice brain native tissue, different exogenous cannabinoid ligands are able to selectively activate different inhibitory and non-inhibitory Gα protein subtypes, through the activation of CB1 and/or CB2 receptors. Results of the present study may help to understand the specific molecular pathways involved in the pharmacological effects of cannabinoid-derived drugs. � 2016 Diez-Alarcia, Ibarra-Lecue, Lopez-Cardona, Meana, Gutierrez-Ad�n, Callado, Agirregoitia and Urig�en

    The MOR-1 Opioid Receptor Regulates Glucose Homeostasis by Modulating Insulin Secretion

    No full text
    In addition to producing analgesia, opioids have also been proposed to regulate glucose homeostasis by altering insulin secretion. A considerable controversy exists, however, regarding the contribution of the μ-opioid receptor (MOR-1) to insulin secretion dynamics. We employed congenic C57BL/6J MOR-1 knockout (KO) mice to clarify the role of MOR in glucose homeostasis. We first found that both sexes of MOR-1 KO mice weigh more than wild-type mice throughout postnatal life and that this increase includes preferentially increased fat deposition. We also found that MOR-1 KO mice exhibit enhanced glucose tolerance that results from insulin hypersecretion that reflects increased β-cell mass and increased secretory dynamics in the MOR-1 mutant mice compared with wild type. Analysis of the isolated islets indicated that islet insulin hypersecretion is mediated directly by MOR expressed on islet cells via a mechanism downstream of ATP-sensitive K+ channel activation by glucose. These findings indicate that MOR-1 regulates body weight by a mechanism that involves insulin secretion and thus may represent a novel target for new diabetes therapies
    corecore