837 research outputs found
Local Algorithms for Block Models with Side Information
There has been a recent interest in understanding the power of local
algorithms for optimization and inference problems on sparse graphs. Gamarnik
and Sudan (2014) showed that local algorithms are weaker than global algorithms
for finding large independent sets in sparse random regular graphs. Montanari
(2015) showed that local algorithms are suboptimal for finding a community with
high connectivity in the sparse Erd\H{o}s-R\'enyi random graphs. For the
symmetric planted partition problem (also named community detection for the
block models) on sparse graphs, a simple observation is that local algorithms
cannot have non-trivial performance.
In this work we consider the effect of side information on local algorithms
for community detection under the binary symmetric stochastic block model. In
the block model with side information each of the vertices is labeled
or independently and uniformly at random; each pair of vertices is
connected independently with probability if both of them have the same
label or otherwise. The goal is to estimate the underlying vertex
labeling given 1) the graph structure and 2) side information in the form of a
vertex labeling positively correlated with the true one. Assuming that the
ratio between in and out degree is and the average degree , we characterize three different regimes under which a
local algorithm, namely, belief propagation run on the local neighborhoods,
maximizes the expected fraction of vertices labeled correctly. Thus, in
contrast to the case of symmetric block models without side information, we
show that local algorithms can achieve optimal performance for the block model
with side information.Comment: Due to the limitation "The abstract field cannot be longer than 1,920
characters", the abstract here is shorter than that in the PDF fil
Super-resolution provided by the arbitrarily strong superlinearity of the blackbody radiation
Blackbody radiation is a fundamental phenomenon in nature, and its explanation by Planck marks a cornerstone in the history of Physics. In this theoretical work, we show that the spectral radiance given by Planck's law is strongly superlinear with temperature, with an arbitrarily large local exponent for decreasing wavelengths. From that scaling analysis, we propose a new concept of super-resolved detection and imaging: if a focused beam of energy is scanned over an object that absorbs and linearly converts that energy into heat, a highly nonlinear thermal radiation response is generated, and its point spread function can be made arbitrarily smaller than the excitation beam focus. Based on a few practical scenarios, we propose to extend the notion of super-resolution beyond its current niche in microscopy to various kinds of excitation beams, a wide range of spatial scales, and a broader diversity of target objects
Premature Cell Senescence and T Cell Receptor‐Independent Activation of CD8+ T Cells in Juvenile Idiopathic Arthritis
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/99044/1/art38015.pd
Towards a Holistic Approach to Technology and Climate Change:What Would Form Part of an Answer?
A Conversation with Justice Ruth Bader Ginsburg
Professor Gillian Metzger: Katherine, thank you for that wonderful overview of all that the Justice has achieved and the history of Columbia Law School. And I want to apologize for those to whom I am showing my back, but this will allow us to have more of a conversation with the Justice.
Justice, thank you so much for being with us today. It is a real privilege for us to get to talk to you this way, and we know for the entire audience. You have had – as you have now heard (LAUGHS) – an amazing and just tremendously varied career, spanning so many different roles of academic, public interest advocate, judge, now Justice. We can\u27t possibly cover all of this in the time we have this morning, but what we are hoping to do is talk a little bit about each of these roles, how each step you took influenced the rest, and then we will be throwing it open after our conversation for questions from the audience
Metamaterial superlenses operating at visible wavelength for imaging applications
© 2018 The Authors. Published by Nature. This is an open access article available under a Creative Commons licence.
The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1038/s41598-018-33572-yIn this paper, a novel design for a metamaterial lens (superlens) based on a Photonic Crystal (PC) operating at visible wavelengths is reported. The proposed superlens consist of a gallium phosphide (GaP) dielectric slab waveguide with a hexagonal array of silver rods embedded within the GaP dielectric. In-house 2DFDTD numerical method is used to design and optimize the proposed superlens. Several superlenses are designed and integrated within a same dielectric platform, promoting the proof-of-concept (POC) of possible construction of an array of superlenses (or sub-lenses to create an M-Lens) for light field imaging applications. It is shown that the concavity of the superlens and positioning of each sub-lens within the array strongly affects the performances of the image in terms of resolution. Defects and various geometrical shapes are introduced to construct and optimize the proposed superlenses and increase the quality of the image resolution. It is shown that the orientation of the active region (ellipse) along x and y axis has tremendous influence on the quality of image resolution. In order to investigate the performance characteristics of the superlenses, transmitted power is calculated using 2D FDTD for image projections at various distances (in x and y plane). It is also shown, how the proposed superlens structures could be fabricated using standard micro fabrication techniques such as electron beam lithography, inductively coupled Reactive ion etching, and glancing angle evaporation methods. To the best of our knowledge, these are the first reported POC of superlenses, integrated in a monolithic platform suitable for high imaging resolution that can be used for light field imaging applications at visible wavelength. The proposed superlenses (integrated in a single platform M-Lens) will have tremendous impact on imaging applications
Investigation of waste heat recovery system at supercritical conditions with vehicle drive cycles
Waste heat recovery (WHR) for internal combustion engines in vehicles using Organic Rankine cycle (ORC) has been a promising technology. The operation of the ORC WHR system in supercritical conditions has a potential to generate more power output and thermal efficiency compared with the conventional subcritical conditions. However, in supercritical conditions, the heat transfer process in the evaporator, the key component of the ORC WHR system, becomes unpredictable as the thermo-physical properties of the working fluid change with the temperature. Furthermore, the transient heat source from the vehicle’s exhaust makes the operation of the WHR system difficult. We investigated the performance of the ORC WHR system at supercritical conditions with engine’s exhaust data from real city and highway drive cycles. The effects of operating variables, such as refrigerant flow rates, evaporator and condenser pressure, and evaporator outlet temperature, on the performance indicators of the WHR system in supercritical conditions were examined. Simulation of operating parameters and the boundary of the WHR system are also included in this paper
Pediatric ADHD symptom burden relates to distinct neural activity across executive function domains
Attention-deficit/hyperactivity disorder (ADHD) is a prevalent childhood disorder marked by inattention and/or hyperactivity symptoms. ADHD may also relate to impaired executive function (EF), but is often studied in a single EF task per sample. The current study addresses the question of unique vs. overlapping relations in brain activity across multiple EF tasks and ADHD symptom burden. Three in-scanner tasks drawn from distinct EF domains (cognitive flexibility, working memory, and inhibition) were collected from children with and without an ADHD diagnosis (N = 63). Whole-brain activity and 11 regions of interest were correlated with parent reports of inattention and hyperactivity symptoms. Across the three EF domains, brain activity related to ADHD symptom burden, but the direction and location of these associations differed across tasks. Overall, activity in sensory and default mode network regions related to ADHD, and these relations did not consistently overlap across EF domains. We observed both distinct and overlapping patterns for inattention and hyperactivity symptoms. By studying multiple EF tasks in the same sample, we identified a heterogenous neural profile related to attention symptom burden in children. Our results inform ADHD characterization and treatment and explain some of the variable brain results related to EF and ADHD reported in the literature
Timing of Colonization of Caries-Producing Bacteria: An Approach Based on Studying Monozygotic Twin Pairs
Findings are presented from a prospective cohort study of timing of primary tooth emergence and timing of oral colonization of Streptococcus mutans (S. mutans) in Australian twins. The paper focuses on differences in colonization timing in genetically identical monozygotic (MZ) twins. Timing of tooth emergence was based on parental report. Colonization timing of S. mutans were established by plating samples of plaque and saliva on selective media at 3 monthly intervals and assessing colony morphology. In 25% of individuals colonization occurred prior to emergence of the first tooth. A significant proportion of MZ pairs (21%) was discordant for colonization occurring before or after first tooth emergence, suggesting a role of environmental or epigenetic factors in timing of tooth emergence, colonization by S. mutans, or both. These findings and further application of the MZ co-twin model should assist in development of strategies to prevent or delay infection with S. mutans in children
Indicators of river system hydromorphological character and dynamics: understanding current conditions and guiding sustainable river management
The work leading to this paper received funding from the EU’s FP7 programme under Grant Agreement No. 282656 (REFORM). The Indicators were developed within the context of REFORM deliverable D2.1, therefore all partners involved in this deliverable contributed to some extent to their discussion and development
- …
