1,119 research outputs found

    Nuclear magnetic resonance measurements reveal the origin of the Debye process in monohydroxy alcohols

    Full text link
    Monohydroxy alcohols show a structural relaxation and at longer time scales a Debye-type dielectric peak. From spin-lattice relaxation experiments using different nuclear probes an intermediate, slower-than-structural dynamics is identified for n-butanol. Based on these findings and on diffusion measurements, a model of self-restructuring, transient chains is proposed. The model is demonstrated to explain consistently the so far puzzling observations made for this class of hydrogen-bonded glass forming liquids.Comment: 4 pages, 4 figure

    Low-Density Granulocytes Are a Novel Immunopathological Feature in Both Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder

    Get PDF
    Objective: To investigate whether low-density granulocytes (LDGs) are an immunophenotypic feature of patients with multiple sclerosis (MS) or neuromyelitis optica spectrum disorder (NMOSD). Methods: Blood samples were collected from 20 patients with NMOSD and 17 patients with MS, as well as from 15 patients with Systemic Lupus Erythematosus (SLE) and 23 Healthy Donors (HD). We isolated peripheral blood mononuclear cells (PBMCs) with density gradient separation and stained the cells with antibodies against CD14, CD15, CD16, and CD45, and analyzed the cells by flow cytometry or imaging flow cytometry. We defined LDGs as CD14-CD15(high) and calculated their share in total PBMC leukocytes (CD45+) as well as the share of CD16(hi) LDGs. Clinical data on disease course, medication, and antibody status were obtained. Results: LDGs were significantly more common in MS and NMOSD than in HDs, comparable to SLE samples (median values HD 0.2%, MS 0.9%, NMOSD 2.1%, SLE 4.3%). 0/23 of the HDs, but 17/20 NMOSD and 11/17 MS samples as well as 13/15 SLE samples had at least 0.7 % LDGs. NMOSD patients without continuous immunosuppressive treatment had significantly more LDGs compared to their treated counterparts. LDG nuclear morphology ranged from segmented to rounded, suggesting a heterogeneity within the group. Conclusion: LDGs are a feature of the immunophenotype in some patients with MS and NMOSD

    Classical and Quantum Gravity in 1+1 Dimensions, Part I: A Unifying Approach

    Full text link
    We provide a concise approach to generalized dilaton theories with and without torsion and coupling to Yang-Mills fields. Transformations on the space of fields are used to trivialize the field equations locally. In this way their solution becomes accessible within a few lines of calculation only. In this first of a series of papers we set the stage for a thorough global investigation of classical and quantum aspects of more or less all available 2D gravity-Yang-Mills models.Comment: 24 pages, no figures, some sign errors in Eqs. 52--59 have been corrected (according to the Erratum

    Two-dimensional interactions between a BF-type theory and a collection of vector fields

    Full text link
    Consistent interactions that can be added to a two-dimensional, free abelian gauge theory comprising a special class of BF-type models and a collection of vector fields are constructed from the deformation of the solution to the master equation based on specific cohomological techniques. The deformation procedure modifies the Lagrangian action, the gauge transformations, as well as the accompanying algebra of the interacting model.Comment: LaTeX 2e, 31 page

    2d Gauge Theories and Generalized Geometry

    Get PDF
    We show that in the context of two-dimensional sigma models minimal coupling of an ordinary rigid symmetry Lie algebra g\mathfrak{g} leads naturally to the appearance of the "generalized tangent bundle" TMTMTM\mathbb{T}M \equiv TM \oplus T^*M by means of composite fields. Gauge transformations of the composite fields follow the Courant bracket, closing upon the choice of a Dirac structure DTMD \subset \mathbb{T}M (or, more generally, the choide of a "small Dirac-Rinehart sheaf" D\cal{D}), in which the fields as well as the symmetry parameters are to take values. In these new variables, the gauge theory takes the form of a (non-topological) Dirac sigma model, which is applicable in a more general context and proves to be universal in two space-time dimensions: A gauging of g\mathfrak{g} of a standard sigma model with Wess-Zumino term exists, \emph{iff} there is a prolongation of the rigid symmetry to a Lie algebroid morphism from the action Lie algebroid M×gMM \times \mathfrak{g}\to M into DMD\to M (or the algebraic analogue of the morphism in the case of D\cal{D}). The gauged sigma model results from a pullback by this morphism from the Dirac sigma model, which proves to be universal in two-spacetime dimensions in this sense.Comment: 22 pages, 2 figures; To appear in Journal of High Energy Physic

    String-Inspired Gravity Coupled to Yang-Mills Fields

    Get PDF
    String-inspired 1+1-dimensional gravity is coupled to Yang-Mills fields in the Cangemi-Jackiw gauge-theoretical formulation, based on the extended Poincar\'e group. A family of couplings, which involves metrics obtainable from the physical metric with a conformal rescaling, is considered, and the resulting family of models is investigated both at the classical and the quantum level. In particular, also using a series of Kirillov-Kostant phases, the wave functionals that solve the constraints are identified.Comment: 15 pages, LaTex

    Anharmonic Evolution of the Cosmic Axion Density Spectrum

    Full text link
    We present analytic solutions to the spatially homogeneous axion field equation, using a model potential which strongly resembles the standard anharmonic (1cosNθ)(1-\cos N\theta) potential, but contains only a piece-wise second order term. Our exactly soluble model for θ(t)\theta(t) spans the entire range [π/N,π/N][-\pi/N,\pi/N]. In particular, we are able to confirm (i) Turner's numeric correction factors \cite{Turner} to the adiabatic and harmonic analytic treatments of homogeneous axion oscillations, and (ii) Lyth's estimate \cite{Lyth} valid near the metastable misalignment angle π/N\pi/N at the peak of the potential. We compute the enhancement of axion density fluctuations that occurs when the axion mass becomes significant at T1T\sim 1 GeV. We find that the anharmonicity amplifies density \mbox{f}luctuations, but only significantly for relatively large initial misalignment angles. The enhancement factor is \sim (2,3,4,13) for θin(0.85,0.90,0.95,0.99)×π\theta_{\rm in}\sim (0.85,0.90,0.95,0.99)\times\pi.Comment: 26 pages, 6 figures appended as a ps-file, Latex, DAMTP-94-21, VAND-TH-94-

    Functional Schroedinger and BRST Quantization of (1+1)--Dimensional Gravity

    Full text link
    We discuss the quantization of pure string--inspired dilaton--gravity in (1+1)(1+1)--dimensions, and of the same theory coupled to scalar matter. We perform the quantization using the functional Schroedinger and BRST formalisms. We find, both for pure gravity and the matter--coupled theory, that the two quantization procedures give inequivalent ``physical'' results.Comment: 40 pages, Late
    corecore