3,073 research outputs found

    The Quest for Alternatives to U.S. Education Reform

    Get PDF

    Footprinting with MPE•Fe(II). Complementary-strand analyses of distamycin- and actinomycin-binding sites on heterogeneous DNA

    Get PDF
    We recently reported a direct technique for determining the binding sites of small molecules on naturally occurring heterogeneous DNA (Van Dyke et al. 1982). Methidiumpropyl-EDTA·Fe(II) (MPE·Fe[II]) (Hertzberg and Dervan 1982) cleaves double-helical DNA with low sequence-specificity (Van Dyke et al. 1982). Using a combination of MPE·Fe(II) partial cleavage of drug-protected DNA fragments and Maxam-Gilbert sequencing methods, we determined the drug-protected sites on one strand of a double-helical fragment from pBR322 for the intercalator actinomycin D (Goldberg et al. 1962; Muller and Crothers 1968; Wells and Larson 1970; Sobell 1973; Krugh 1981; Patel et al. 1981; Takusagawa et al. 1982) and the minor-groove binders netropsin and distamycin A (Luck et al. 1974; Wartell et al. 1974; Zimmer 1975; Berman et al. 1979; Krylov et al. 1979). Netropsin and distamycin A gave identical DNA-cleavage inhibition patterns or footprints in regions rich in dA·dT base pairs. Actinomycin D afforded a completely different footprint..

    Wide Complex Tachycardia in a Critically Ill Patient:

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72775/1/j.1540-8167.1997.tb01025.x.pd

    FUSE Detection of Galactic OVI Emission in the Halo above the Perseus Arm

    Full text link
    Background observations obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) toward l=95.4, b=36.1 show OVI 1032,1038 in emission. This sight line probes a region of stronger-than-average soft X-ray emission in the direction of high-velocity cloud Complex C above a part of the disk where Halpha filaments rise into the halo. The OVI intensities, 1600+/-300 ph/s/cm^2/sr (1032A) and 800+/-300 ph/s/cm^2/sr (1038A), are the lowest detected in emission in the Milky Way to date. A second sight line nearby (l=99.3, b=43.3) also shows OVI 1032 emission, but with too low a signal-to-noise ratio to obtain reliable measurements. The measured intensities, velocities, and FWHMs of the OVI doublet and the CII* line at 1037A are consistent with a model in which the observed emission is produced in the Galactic halo by hot gas ejected by supernovae in the Perseus arm. An association of the observed gas with Complex C appears unlikely.Comment: accepted for publication in ApJL, 11 pages including 3 figure

    Fast-slow asymptotic for semi-analytical ignition criteria in FitzHugh-Nagumo system

    Get PDF
    We study the problem of initiation of excitation waves in the FitzHugh-Nagumo model. Our approach follows earlier works and is based on the idea of approximating the boundary between basins of attraction of propagating waves and of the resting state as the stable manifold of a critical solution. Here, we obtain analytical expressions for the essential ingredients of the theory by singular perturbation using two small parameters, the separation of time scales of the activator and inhibitor, and the threshold in the activator's kinetics. This results in a closed analytical expression for the strength-duration curve.Comment: 10 pages, 5 figures, as accepted to Chaos on 2017/06/2

    The Rapidly Rotating, Hydrogen Deficient, Hot Post-Asymptotic Giant Branch Star ZNG 1 in the Globular Cluster M5

    Full text link
    We report observations of the hot post-asymptotic giant branch star ZNG 1 in the globular cluster M5 (NGC 5904) with the Far Ultraviolet Spectroscopic Explorer (FUSE). From the resulting spectrum, we derive an effective temperature T_eff = 44300 +/- 300 K, a surface gravity log g = 4.3 +/- 0.1, a rotational velocity v sin i = 170 +/- 20 km/s, and a luminosity log (L/L_sun) = 3.52 +/- 0.04. The atmosphere is helium-rich (Y = 0.93), with enhanced carbon (2.6% by mass), nitrogen (0.51%) and oxygen (0.37%) abundances. The spectrum shows evidence for a wind with terminal velocity near 1000 km/s and an expanding shell of carbon- and nitrogen-rich material around the star. The abundance pattern of ZNG 1 is suggestive of the ``born-again'' scenario, whereby a star on the white-dwarf cooling curve undergoes a very late shell flash and returns to the AGB, but the star's rapid rotation is more easily explained by a previous interaction with a binary companion.Comment: 8 pages, 2 PostScript figures, Latex with emulateapj5. Accepted for publication in ApJ Letter

    The relative importance of seed competition, resource competition and perturbations on community structure

    Get PDF
    While the regional climate is the primary selection pressure for whether a plant strategy can survive, however, competitive interactions strongly affect the relative abundances of plant strategies within communities. Here, we investigate the relative importance of competition and perturbations on the development of vegetation community structure. To do so, we develop DIVE (Dynamics and Interactions of VEgetation), a simple general model that links plant strategies to their competitive dynamics, using growth and reproduction characteristics that emerge from climatic constraints. The model calculates population dynamics based on establishment, mortality, invasion and exclusion in the presence of different strengths of perturbations, seed and resource competition. The highest levels of diversity were found in simulations without competition as long as mortality is not too high. However, reasonable successional dynamics were only achieved when resource competition is considered. Under high levels of competition, intermediate levels of perturbations were required to obtain coexistence. Since succession and coexistence are observed in plant communities, we conclude that the DIVE model with competition and intermediate levels of perturbation represents an adequate way to model population dynamics. Because of the simplicity and generality of DIVE, it could be used to understand vegetation structure and functioning at the global scale and the response of vegetation to global change

    Robust Upward Dispersion of the Neutron Spin Resonance in the Heavy Fermion Superconductor Ce1x_{1-x}Ybx_{x}CoIn5_5

    Get PDF
    The neutron spin resonance is a collective magnetic excitation that appears in copper oxide, iron pnictide, and heavy fermion unconventional superconductors. Although the resonance is commonly associated with a spin-exciton due to the dd(s±s^{\pm})-wave symmetry of the superconducting order parameter, it has also been proposed to be a magnon-like excitation appearing in the superconducting state. Here we use inelastic neutron scattering to demonstrate that the resonance in the heavy fermion superconductor Ce1x_{1-x}Ybx_{x}CoIn5_5 with x=0,0.05,0.3x=0,0.05,0.3 has a ring-like upward dispersion that is robust against Yb-doping. By comparing our experimental data with random phase approximation calculation using the electronic structure and the momentum dependence of the dx2y2d_{x^2-y^2}-wave superconducting gap determined from scanning tunneling microscopy for CeCoIn5_5, we conclude the robust upward dispersing resonance mode in Ce1x_{1-x}Ybx_{x}CoIn5_5 is inconsistent with the downward dispersion predicted within the spin-exciton scenario.Comment: Supplementary Information available upon reques
    corecore