2 research outputs found

    Mixing in PCBM/P3HT bilayers, using in situ and ex situ neutron reflectivity

    Get PDF
    In situ and ex situ neutron reflectivity is used to characterize annealed regioregular-P3HT/PCBM bilayers. In situ annealing of a 20 nm PCBM/35 nm P3HT bilayer at 170 °C reveals rapid mixing of PCBM and P3HT to produce a polymer-rich layer that contains around 18–20% PCBM. Samples with three different thicknesses of P3HT layer are ex situ annealed at 140 °C. This again reveals migration of PCBM into the P3HT and vice versa, with the polymer-rich layer in the 20 nm PCBM/35 nm P3HT sample containing 19% PCBM. Complete migration of the entire PCBM layer into the P3HT layer is observed for a 20 nm PCBM/80 nm P3HT bilayer. The robustness of fitted model composition profiles, in comparison with real-space imaging of sample surface morphology and previous work on annealed P3HT/PCBM bilayer compositions, is discussed in detail

    Bimodal crystallization at polymer-fullerene interfaces

    Get PDF
    The growth-kinetics of [6,6]-phenyl C61-butyric acid methyl ester (PCBM) crystals, on two different length-scales, is shown to be controlled by the thickness of the polymer layer within a PCBM-polymer bilayer. Using a model amorphous polymer we present evidence, from in situ optical microscopy and grazing-incidence X-ray diffraction (GIXD), that an increased growth-rate of nanoscale crystals impedes the growth of micron-sized, needle-like PCBM crystals. A combination of neutron reflectivity and GIXD measurements, also allows us to observe the establishment of a liquid-liquid equilibrium composition-profile between the PCBM layer and a polymer-rich layer, before crystallization occurs. While the interfacial composition-profile is independent of polymer-film-thickness, the growth-rate of nanoscale PCBM crystals is significantly larger for thinner polymer films. A similar thickness-dependent behavior is observed for different molecular weights of entangled polymer. We suggest that the behavior may be related to enhanced local-polymer-chain-mobility in nanocomposite thin-films
    corecore