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 ARTICLES

Mixing in PCBM/P3HT bilayers, using in situ and ex situ neutron
reflectivity

Dyfrig Môn and Anthony M. Higginsa)

College of Engineering, Swansea University, Wales SA1 8EN, UK

Philipp Gutfreund
Large Scale Structures, Institut Laue-Langevin, Grenoble 38000, France

David James
College of Engineering, Swansea University, Wales SA1 8EN, UK

(Received 2 August 2016; accepted 30 January 2017)

In situ and ex situ neutron reflectivity is used to characterize annealed regioregular-P3HT/PCBM
bilayers. In situ annealing of a 20 nm PCBM/35 nm P3HT bilayer at 170 °C reveals rapid mixing
of PCBM and P3HT to produce a polymer-rich layer that contains around 18–20% PCBM. Samples
with three different thicknesses of P3HT layer are ex situ annealed at 140 °C. This again reveals
migration of PCBM into the P3HT and vice versa, with the polymer-rich layer in the 20 nm PCBM/
35 nm P3HT sample containing 19% PCBM. Complete migration of the entire PCBM layer into
the P3HT layer is observed for a 20 nm PCBM/80 nm P3HT bilayer. The robustness of fitted
model composition profiles, in comparison with real-space imaging of sample surface morphology
and previous work on annealed P3HT/PCBM bilayer compositions, is discussed in detail.

I. INTRODUCTION

Organic photovoltaic (OPV) devices offer the potential
for low-cost and large-area solar cells.1 Ultrathin and
flexible OPV devices also enable building and transport
integration in products such as windows, transparent
roofs, or car windshields.2,3 OPVs are particularly attrac-
tive because of the ability to manufacture them using
high throughput printing processes.4 A popular choice for
the active layer of OPVs is the bulk heterojunction (BHJ)
formed by blending together electron-donating and
electron-accepting species (either polymers or small
molecules). A long-established and well-studied choice
for such a blend consists of a fullerene derivative and
a conjugated polymer.5,6 Here, the BHJ consists of
a complex morphology that is designed to enable efficient
separation of charges at the interface between the electron-
donating polymer and the electron-accepting fullerene.7

The requirement for large interfacial area needs to be
balanced by the provision of a continuous path for electron
and hole transport.7 A full characterization and under-
standing of the morphology formed during device fabri-
cation, and the potential evolution of structure/morphology
during operation,8 is challenging because a number of
different processes, such as phase separation, surface or

substrate enrichment9 and crystallization (potentially of
both components),2,6 may contribute to the final film
structure and device performance. It is hoped that the
development of further understanding of the morphology
of OPV materials in thin-film architectures will underpin
the successful commercial application of OPVs.2,5,10,11

This paper describes a study that focusses on conjugated
polymer/fullerene mixing, by looking at the evolution of
morphology within a simplified (bilayer) geometry, as
a function of the polymer film thickness and temperature.
To understand the process controlling the morphology

of fullerene and polymer OPVs, several studies on bilayers
constructed from [6,6]-phenyl C61-butyric acid methyl
ester (PCBM) and poly(3-hexylthiophene) (P3HT) have
been carried out.11–20 These bilayers initially consisted of
pure P3HT and PCBM layers, with thermal annealing used
as a means to study the intermixing of the PCBM and
P3HT. A number of studies have shown that PCBM and
P3HT can rapidly intermix,11,14,18,19 and that this mixing
involves diffusion of PCBM into amorphous regions of the
P3HT. However, in PCBM/regioregular-P3HT bilayers,
there are significant quantitative differences between the
composition profiles in some of these studies. Treat et al.
observed a uniform distribution of PCBM across 450 nm
bilayers after 5 min of annealing at 150 °C,14 indicative of
a PCBM loading of 40%. In contrast, D. Chen et al.,
working in thinner bilayers but at similar annealing times
and temperatures, observed only partial mixing, even
though the PCBM constituted less than 40% of the total
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amount of material in the film.20 Both of these studies used
dynamic secondary ion mass spectroscopy (DSIMS).
Neutron reflectivity allows depth profiles to be determined
with significantly higher resolution, and also allows for
time-dependent (in situ) measurements.21,22 In addition to
the measurement of layer composition offered by ion beam
methods and ellipsometry,23,24 this increased resolution
allows characterization of roughness at buried polymer
interfaces, which is typically on the order of a few nano-
meters.25 Neutron reflectivity was performed on several
P3HT/PCBM bilayers with different ratios of PCBM to
P3HT by H. Chen et al.17 They reported only partial
mixing in bilayers after annealing for 60 min at 150 °C,
a maximum loading of ;22% PCBM in the P3HT-rich
layer, and surface enrichment of PCBM within the P3HT-
rich (top) layer.

In this paper we look at the mixing between PCBM and
regioregular P3HT as a function of film thickness and
annealing temperature. We adopt the robust methodology
that we have used in our previous studies of PCBM/
polymer bilayers26 and use a combination of in situ
annealing (annealing a sample in the neutron beam) and
ex situ annealing (annealing a sample before measuring the
reflectivity). Our results add to the strong body of evidence
that there is rapid intermixing between PCBM and P3HT,
and support the work of H. Chen et al.17—giving
a maximum loading of PCBM in P3HT of around 20%.
However, we find contrasting (and rather subtle) results in
comparison with the reported findings of H. Chen et al., in
relation to PCBM-enrichment at the free surface.

II. EXPERIMENTAL PROCEDURES

A. Materials

PCBM, with 99.5% purity, was obtained from Solenne
BV (Groningen, The Netherlands). P3HT (weight-average
molecular weight 36,000, polydispersity index 1.8, regior-
egularity 91–94%) was supplied by Rieke Metals (Lincoln,
Nebraska). Silicon [(100) with native oxide layer] was
obtained from Prolog Semicor (Kiev, Ukraine). Mica sheets
were obtained from Goodfellow (Huntingdon, United King-
dom). Toluene and chlorobenzene were purchased from
Sigma-Aldrich (St. Louis, Missouri).

B. Sample fabrication

P3HT layers were spin-coated onto freshly-cleaved
mica from toluene solutions (0.1, 1, and 2 wt% for the
8 nm, 35 nm, and 80 nm films respectively). PCBM layers
were spin-coated from a chlorobenzene solution (1 wt%)
onto 2-inch diameter silicon substrates. A spin speed of
1000 revolutions per minute was used for all films. The
spin-coated mica/P3HT layers and substrate/PCBM
layers were then left for 24 h under vacuum before
bilayer fabrication. Silicon/PCBM/P3HT bilayers were
prepared by floating the P3HT layer onto the surface of

de-ionized water, and then depositing this layer onto the
silicon/PCBM sample. Newly fabricated bilayers were
firstly allowed to dry at ambient conditions and were then
left under vacuum for 24 h, before annealing.

C. In situ annealing

Samples were annealed on the neutron reflectivity
beam-line, in a nitrogen atmosphere. The sample surface
temperature during in situ annealing was calibrated by
attaching an external thermocouple to the surface of
duplicate silicon samples. There is a slight temperature
overshoot (of a few °C) at the start of in situ annealing,
and the quoted temperature of 170 °C, represents the
approximate maximum sample surface temperatures
reached during annealing. To keep this overshoot to
a minimum the temperature was increased in two steps;
an intermediate step from room temperature to 80 °C,
followed by a step from 80 to 170 °C. A full reflectivity
curve was measured at 80 °C (this took 90 min) and the
temperature was then raised to 170 °C.

D. Ex situ annealing

Neutron reflectivity samples were annealed in the dark in
a vacuum oven (Binder Inc., Bohemia, New York) with a
vacuum of ;10�3 Torr. Sample surface temperatures were
calibrated by attaching an external thermocouple to the
surface of duplicate silicon samples in the oven. At the end
of annealing, samples were removed from the oven and
rapidly quenched to room temperature on a metal surface.
All quoted temperatures for ex situ annealed samples refer
to the sample surface temperature. In contrast to the in situ
annealing, there was no intermediate step here. The samples
were heated to the annealing temperature in one go.

E. Atomic force microscopy (AFM)

Tapping mode was used on a Dimension-3100 (Veeco,
New York, New York) or a CE100 (Park Systems
Corporation, Suwon, South Korea), with OTESPA (Bruker
Corporation, Billerica, Massachusetts) cantilevers to mea-
sure sample surface morphology and to determine initial
bilayer film thicknesses. Film thickness was determined by
scratching the surface of a single layer on a silicon substrate
and scanning across the step edge of the scratch.

F. Neutron reflectivity

Measurements were carried out using beam-line D17 at
the Institut Laue-Langevin (ILL) in time-of-flight (TOF)
mode.27 TOF uses a broad range of neutron wavelengths
at a fixed incident angle. At D17 two incident angles
were used to cover the full reflectivity range, down to
a reflectivity of approximately 10�6. Specular reflectivity
was extracted using the program COSMOS within the
Large Array Manipulation Program (LAMP) distributed
by the ILL. Two incident-angles (0.6 and 2.4°) were used
to produce a full reflectivity curve, with resolution
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ranging from 2.3% at low momentum-transfer (q), to 4.9%
at high q. Measurements during in situ annealing used
a single angle of 1°, but with chopper settings that gave
a higher flux of neutrons. This angle just captured the
critical edge for the sample, gave a lower q range and
a lower resolution (between 4.1 and 8.1%), but the higher
flux allowed much shorter acquisition-times. Samples were
exposed to the neutron beam for acquisition-times of
30 min at 0.6°, 60 min at 2.4° and in 30 s time-slices at 1°.

Reflectivity was fitted using Parratt32 and Motofit.28

Each layer was characterized by a thickness and scatter-
ing length density (SLD), plus an interfacial roughness
between adjacent layers (r). The instrumental resolution
was included within the models for all samples, at the
values calculated from the slit widths and chopper
settings. Except where stated otherwise, samples were
fitted using fixed silicon and native silicon oxide layer
parameters. The silicon substrate SLD was fixed at
2.07 � 10�6 Å�2. The silicon substrate r was fixed at
0.7 nm. The native silicon oxide layer parameters were
fixed at the following values; SLD 5 3.48 � 10�6 Å�2,
thickness 5 1.5 nm, and r 5 0.7 nm.

SLDs for pure P3HT and PCBM were first calculated
using the National Institute of Standards and Technol-
ogy (NIST) SLD calculator29 with literature density
values.14,17,30 The calculated value for PCBM was 4.4 �
10�6 Å�2 and for P3HT was 0.62 � 10�6 Å�2. These
values were used as initial guesses when fitting the
reflectivity curves of unannealed bilayers and ex situ
annealed bilayers. For the in situ sample, the fit
parameters from the previous time slot in the kinetic
series were used as the initial guesses.

The percentage (by volume) of PCBM in the each
layer was calculated using:

100� SLDlayer � SLDpure P3HT
� �

SLDpure PCBM � SLDpure P3HT
� � ; ð1Þ

where SLDi is the SLD of layer i, and the SLDs of pure
P3HT and pure PCBM were set to the above calculated
values.

G. Optical microscopy

Images were obtained using a Nikon Eclipse-E600FN
microscope (Nikon, Tokyo, Japan), using a 50� objective.

III. RESULTS AND DISCUSSION

The reflectivity data from a bilayer measured at 80 °C
and the corresponding fit obtained using a two-layer model
are shown in Fig. 1(a). Figure 1(b) shows the fitted SLD
profile. The SLD of the PCBM layer is 4.30 � 10�6 Å�2,
and the SLD of the P3HT layer is 0.62 � 10�6 Å�2. These
values correspond reasonably closely to previously
reported values.17,31 The interfacial roughness, r, between

the two layers is 1.2 nm. This SLD profile corresponds
closely to that of an as-fabricated PCBM/polymer bilayer
(see e.g., Môn et al.26), and shows that little (if any)
interdiffusion has occurred during the temperature step
from room temperature to 80 °C. We note that the data
shown in Fig. 1 clearly has significantly more pronounced
fringes in the reflectivity and a sharper interface than the
unannealed PCBM/P3HT bilayer (with a 15 nm PCBM
layer) fabricated by H. Chen et al. (Figs. 1 and 2).17

The sample from Fig. 1 was then annealed in situ for
30 min. In situ annealing allows the reflectivity to be
modeled from a known starting composition-profile, from
which the subsequent SLD profile evolution can be
followed in small steps. The sample temperature mea-
surement in Fig. 2 shows that there was an initial period
of approximately 5 min, during which the sample
temperature increased from 80 to approximately
170 °C, followed by a 10 min period of temperature
stabilization and a 15 min period of annealing at
a constant temperature. The sample was then allowed to
cool. Once the sample had again reached 80 °C, another
full reflectivity curve was measured.

The reflectivity data, fits and SLD profiles for the
sample are shown in Fig. 3. The data is well-fitted using
a simple bilayer model (i.e., two layers of uniform
composition, separated by an interface parameterized by
Gaussian roughness25,32,33) at all stages of annealing.
Figure 3(a) shows how the reflectivity from this 35 nm
P3HT bilayer sample changed with annealing. There is
a clear change in the periodicity of the Kiessig fringes,
indicative of significant changes in the composition
profile within the sample. Figure 3(b) shows the SLD
profile normal to the substrate for various annealing times
and Fig. 4 shows the evolution of some of the fit
parameters during annealing. In comparison to the
composition profile at 80 °C, the SLD profile progressed
in three clear ways during annealing at 170 °C; (i) the
bottom layer SLD reduced; (ii) the top layer SLD
increased; (iii) the interface roughness between the top
and bottom layers increased. Small changes may be
attributed to thermal expansion/contraction during heating/
cooling (see Leman et al. Supplementary Material23).
However, this would only account for approximately
a 1.5% change in SLD between 80 and 170 °C. System-
atic changes in the composition profile are complete
within 15 min, or possibly earlier. The ability to
discriminate more precise kinetics in the time period
before 15 min is confounded by scatter in the fit
parameters, potential correlations between fit parameters
(given the restricted q-range, lower resolution, and poorer
statistics of the 30 s time-slices in comparison to the full
reflectivity curves), and sample surface temperature
stabilization. Scatter in the fit parameters is most evident
for the top layer SLD. This is likely to be a result of the
fact that the SLD of this layer is much lower than the
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bottom layer, resulting in the SLD of this layer having
less of a constraining influence on the model reflectivity
than that of the bottom layer (variation in the SLD-
contrast at the interface, of a given magnitude, is a much
larger fraction of the SLD of the top layer in comparison
to the bottom layer). Figures 3 and 4 also show the
changes in the composition profile obtained from fits of
the full reflectivity curves before and after annealing.
This data shows a difference in the fitted bottom layer
SLD after annealing (;3.7 � 10�6 Å�2) in comparison
to the fit during annealing (;3.2 � 10�6 Å�2). Given the
differences between the quality of the measurements
during and before/after annealing discussed above it is
entirely possible, indeed likely, that this apparent change
is a measurement artifact. However, in comparison
with the SLD profile before annealing, the SLD profile

after-annealing confirms the overall trend in the layer
SLDs and interfacial roughness found during annealing.
The composition profile after annealing has bottom and

FIG. 1. (a) Reflectivity versus momentum transfer normal to the substrate (q), and fit for an unannealed PCBM (;20 nm)/P3HT (;35 nm) bilayer
on silicon. (b) The SLD profile corresponding to the best-fit line in (a). Fits were obtained using a bilayer model in which the thickness, SLD and
roughness of each layer was allowed to vary.

FIG. 2. Temperature versus in situ annealing time, for a nominal
temperature of 170 °C. The dashed line shows the set-point temper-
ature and the continuous line shows the sample surface temperature.

FIG. 3. (a) Neutron reflectivity data and (b) SLD profiles from a PCBM
(;20 nm)/P3HT (;35 nm) bilayer annealed in situ at 170 °C. Reflectivity
curves are offset vertically for clarity. The lines in (a) are bilayer fits to the
experimental data. The percentage PCBM in each layer and interface
roughness, r, are shown for the SLD profile after annealing. The
measurements before-annealing and after-annealing were performed at
80 °C. The times given in the legend are those at the end of each 30 s time
slice.
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top layers of 81% PCBM and 19% PCBM respectively,
and an interface roughness of 5.1 nm.

The changes observed indicate that there has been
a significant transfer of PCBM into the initially pure
P3HT layer producing a P3HT-rich layer, and a transfer
of P3HT into the initially pure PCBM layer producing
a PCBM-rich layer, in a time frame of less than a few
minutes. This is consistent with previous results in similar
PCBM/P3HT bilayers.14,17 The migration of both species
in this system can be contrasted with our findings for
PCBM/polystyrene (PS) bilayers, using the same thick-
ness PCBM (the same batch of material, spin-coated from
the same solvent).26 In the simpler PCBM/PS system (in
which only the PCBM can crystallize) mixing also
occurred very rapidly, but here only the PCBM diffuses
into the PS, with no PS migrating into the PCBM. The
PCBM/PS system forms a consistent composition profile
(between a PS-rich phase and a pure PCBM phase) that is
suggestive of an equilibrium liquid–liquid interface (on
the basis that the interface forms before any PCBM
crystallizes, and is independent of annealing temperature
and film thickness). The situation is very different for
regioregular P3HT/PCBM, as the as-cast polymer film
contains extensive crystalline regions (see Supplementary
Material Fig. S1 and previous studies31,34,35).

In our previous investigations of annealed PCBM
(20 nm)/PS bilayers, we found a very strong influence of
the polymer film thickness and temperature on the crystal-
lization behavior of the PCBM, but no influence on the
composition profile within the bilayer.26 To see how film
thickness and temperature affect the mixing in the
PCBM/P3HT system, bilayers with 20 nm of PCBM on
the bottom and P3HT layers of various thicknesses on
top, were annealed at 140 °C. Figure 5 shows the
reflectivity data and SLD profiles obtained from bilayer/
single layer fits with three different P3HT thicknesses,
after ex situ annealing. As with the in situ measurements,
migration of PCBM into the P3HT layer on annealing is
evident for all three thicknesses of P3HT. A simple
bilayer model fits the 8 and 35 nm P3HT sample data
well [Figs. 5(a) and 5(b)]. For the 8 nm P3HT sample the
best-fit has a PCBM-rich layer containing 90–98%
PCBM and a P3HT-rich layer containing ;7–19%
PCBM. For the 35 nm P3HT sample the best-fit
PCBM-rich layer contains 84–85% PCBM and the
P3HT-rich layer contains 18–20% PCBM. The roughness
of the buried PCBM-rich/P3HT-rich interface has best-fit
values of 2.4–2.7 nm and 3.3–3.8 nm for the 8 nm P3HT
and 35 nm P3HT samples respectively. The composition
and interfacial roughness ranges quoted here refer to best

FIG. 4. Fit parameters for the PCBM (;20 nm)/P3HT (;35 nm) sample annealed in situ at 170 °C. The reflectivity curves and SLD profiles for this
sample are shown in Fig. 3. The filled circles correspond to fits of the full reflectivity curves before and after annealing the sample. The open squares
correspond to fits of the reflectivity collected at a single incident angle during annealing (30 s collection time for each data point). The SLD of the
bottom and top layers are shown in (a) and (b) respectively, and the interface roughness between these two layers is shown in (c).
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fits which were obtained by independent repeats of the
data reduction and fitting methodology. The robustness of
the fit parameters with-respect-to the inclusion/neglect of
the oxide layer was also tested, and found to be
negligible. It is important to point out that the PCBM
concentration in the P3HT-rich (top) layer in the 8 nm
P3HT sample is subject to significantly more uncertainty
than the other layer concentrations in the fits of both the

8 and 35 nm P3HT samples, due to the fact that this
sample consists of a very thin layer of low SLD material
on top of a thicker layer of higher SLD. However, it is
clear that significant mixing has occurred in this sample,
as the data cannot be fitted well using pure P3HT and
PCBM layer SLDs. A final test of the robustness of our
modeling is provided by using an alternative approach to
fit the data. Rather than using a bilayer model, with the

FIG. 5. Neutron reflectivity data and fits for PCBM (20 nm)/P3HT bilayers on silicon, with three different thicknesses of P3HT. (a–c) Neutron reflectivity
data and fits. All fits use either a single layer or bilayer model in which the thickness, SLD and roughness of each layer is allowed to vary. The SLD
profiles corresponding to the best-fit lines in (a–c) are given in (d–f) respectively. Initial thicknesses of P3HT were approximately 8 nm in (a) and (d),
35 nm in (b) and (e) and 80 nm in (c) and (f). All samples were ex situ annealed at 140 °C (for 60 min for the 8 and 35 nm P3HT bilayers, and for 10 min
for the 80 nm P3HT bilayer). A 20 layer fit to the 35 nm P3HT sample is also shown in (e); in this fit the interfacial roughness between all layers is set to
zero, and the SLD of all layers is allowed to vary. There is no fixed oxide layer included in this model. There is also no fixed oxide layer included in the
single/bilayer fits in (c) and (f). The unannealed SLD profiles in (d), (e) and (f) were calculated from AFM measurements (of the layer thicknesses and the
surface roughness) of duplicate PCBM and P3HT single layers, and of the bilayer samples prior to annealing (imaging peripheral areas of the sample that
were not irradiated by the neutron beam). The percentages (by volume) of PCBM in each layer and the roughness of the PCBM-rich/P3HT-rich interface,
after annealing are given in (e) for the 2 layer fit to this sample. The inset in (c) shows the same data/fits presented in ‘R4

q’ format.
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gradient in SLD at the buried interface described by
Gaussian roughness, a much larger number of discrete
thin layers with adjustable SLD, but zero roughness
between the layers is used to describe the SLD profile.
The 20-layer fit in Fig. 5(e) shows a very similar SLD
profile to the bilayer fit.

Our results show a close similarity between the
reflectivity curves and fitted SLD profiles for 20 nm
PCBM/35 nm P3HT bilayers after annealing at both
170 °C [Figs. 3(a) and 3(b)] and 140 °C [Figs. 5(b) and
5(e)]. We now discuss this with regard to the state
(crystalline/amorphous) of the PCBM and P3HT within
the bilayers. Grazing-incidence X-ray diffraction (GIXD)
measurements (see Supplementary Material Fig. S1)
show extensive P3HT crystallization, but little evidence
of significant PCBM crystallization on annealing at
140 °C. GIXD measurements were not performed in
parallel with the in situ neutron reflectivity measurements
at 170 °C. However, it is quite likely that some PCBM
nanocrystallisation occurs at 170 °C, if not on the
timescale of the rapid mixing shown in Fig. 3, then
within the 30 min annealing time (Leman et al.23 report
crystallization of PCBM within a similar PCBM/P3HT
bilayer, but with the PCBM layer on top, annealed at
160 °C for 10 min). Given the strong temperature
dependence of the crystallization of PCBM between
140 and 170 °C,34 and the high levels of crystalline
material in spin-coated P3HT,31,34,35 the similar SLD
profiles are what one would expect in a system where
there is rapid diffusion of PCBM into the amorphous
P3HT regions, with little change in the fraction of
amorphous P3HT and little influence of any PCBM
crystallization that may occur at 170 °C, during this
rapid diffusion process. A similar lack of sensitivity to
annealing temperature is found for PCBM/PS bilayers,
but for a completely different reason. Migration of
PCBM into PS also occurs within a few minutes and
gives similar SLD profiles at both 140 and 170 °C.26

However, in the case of PCBM/PS the composition
profile is established in the absence of any crystallization,
whereas in P3HT/PCBM the composition profile is likely
to be largely determined by the volume fraction and
micro/nano-structure of the pre-existing crystalline/amor-
phous regions within the polymer layer prior to bilayer
annealing.31

For the 80 nm P3HT sample, the reflectivity curve is
modeled reasonably well using a single layer fit (in which
the SLD, thickness and roughness of the layer are allowed
to vary), indicating that there is ‘almost’ complete mixing
of PCBM and amorphous P3HT [see Figs. 5(c) and 5(f)].
However, this fit has an integrated SLD that is much too
high (by a factor of ;40%; see Table SI in the Supple-
mentary Material), given the known composition of the
sample. Figure 5(f) also shows a bilayer fit for the 80 nm
P3HT sample (in which the SLDs, thicknesses, and

roughnesses of both layers are allowed to vary). This fit
is visually better and has a lower value of the goodness-of-
fit reduced chi-squared parameter, v2m,

36 compared to the
single layer fit, but still has an integrated SLD that is
unphysically high. Further approaches to fit the reflectivity
from this sample were made using a number of different
multilayer models. These approaches highlight the potential
for nonuniqueness, in terms of different models that can
adequately fit the data for the 80 nm P3HT sample, and
hence place limits on the precision with which it is possible
to describe the details of the composition profile in this
sample. Discussion of these different approaches and the
degree to which we are able to determine details of the
composition profile is provided in the supplementary
material (see Fig. S2 and accompanying discussion). The
main conclusion from this discussion is that, despite the
existence of significant uncertainty over the exact distribu-
tion of PCBM within the 80 nm P3HT sample, the physical
picture represented by the reflectivity curve in Fig. 5(c)
corresponds to a situation in which the entire PCBM bottom
layer has mixed into the P3HT layer on top.

We also assessed the morphology of annealed
bilayers using optical microscopy and AFM. This in-
volved the samples used for the neutron reflectivity
measurements and duplicate samples, annealed for
various times at different temperatures. Fig. S3 shows
the emergence of micron-sized PCBM crystals previ-
ously reported in bilayers annealed for 120 min.26 No
emergence of such crystals was seen in the samples used
for neutron reflectivity (annealed for 60 min or less).
Figure 6 shows typical surface morphology on the 35
and 80 nm P3HT neutron reflectivity samples annealed
at 140 °C. The morphology of the 35 nm P3HT sample
consists of discrete features of around 10–25 nm in
height separated by several microns or more. There is no
sign of any dewetting on this sample (in contrast to the
report by Ro et al.31 for P3HT/PCBM bilayers with the
PCBM layer on top), and the root-mean-square (rms)
roughness of the surface is small compared to the total
bilayer thickness or the thickness of the P3HT layer (the
maximum peak-to-trough height seen in profile 1 of
Fig. 6(c) is also lower than the P3HT layer thickness).
This negates the possibility that the reduction in the
SLD of the bottom layer in Fig. 5(e) is due to lateral
averaging of the SLD profile (averaged over the in-plane
coherence length of the neutrons - tens of microns37,38)
over regions that contain significant macroscopic
(micron-sized) surface holes that penetrate into the
bottom 20 nm of the sample. This is also the case for
the 35 nm P3HT bilayer annealed in situ at 170 °C; In
comparison to the 35 nm P3HT sample, ex situ annealed
at 140 °C, this sample shows different ‘dot-like’
morphological features on the sample surface (see
Fig. S4). We do not understand the reason for this
morphological difference at present.
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We note that the volume fraction of PCBM in the
bottom layers of the two 35 nm P3HT bilayer sample fits
(81 and 85%) are within the miscibility gap proposed for
this system by Ulum et al. [Fig. 5(b)].39 However more
recent studies,23,40 including a study that looked at the
impact of P3HT molecular weight on the Flory–Huggins
interaction parameter (at 150 °C) in this system40

concluded that, over the range of molecular weights used
in the present study, the PCBM and P3HT were com-
pletely miscible. In this case the asymmetric composition
profiles that we observe will result, not from any
influence of liquid–liquid phase co-existence, but due to

the extensive P3HT crystallisation that exists in the
unannealed bilayers. It is possible that the pinning of
amorphous P3HT chain sections at either one or more
locations along the chain, by P3HT crystallites, restricts
both the diffusion of polymer chains into the bottom layer
and also PCBM molecules into the top layer of the
sample. In the latter case, this is via a mechanism in
which amorphous P3HT tie-chains, that bridge between
crystallites, restrict ingress of PCBM into the amorphous
P3HT regions, as this requires swelling of the space
between P3HT crystallites and a consequent reduction in
the entropy of the tie chains.23

FIG. 6. Optical microscopy and atomic force microscopy (AFM) images of annealed (20 nm) PCBM/P3HT bilayers. (a) Optical microscopy image
of a 35 nm P3HT bilayer annealed at 140 °C for 60 min. (b) AFM image of the sample shown in (a). (c) Line profiles from the image shown in (b).
(d) Optical microscopy of an 80 nm P3HT bilayer annealed at 140 °C for 10 min. (e) AFM image of an 80 nm P3HT bilayer annealed at 140 °C for
60 min. (f) A line profile from the image shown in (e). (a–d) were taken from the actual samples measured with neutron reflectivity, while (e) and
(f) are from a duplicate of the sample show in (d), but annealed for 60 min, rather than the 10 min (both AFM measurements and optical microscopy
images on these two samples look very similar). The rms roughnesses of (b) and (e) are 2.7 and 26 nm respectively. AFM measurements (not
shown) on the sample shown in (d) gave an rms roughness of 24 6 2 nm (averaged over five 40 � 40 lm scans from different parts of the sample).
Images (a) and (d) are both of size 100 � 68 lm.
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The situation is very different for the 80 nm P3HT
bilayer annealed at 140 °C. Figures 6(d)–6(f) show
a much rougher sample surface for bilayers annealed
for 10 and 60 min. This is clearly the cause of the low
reflectivity in Fig. 5(c). However, even here, fringes from
the total thickness are still present (though very weak)
and AFM again shows that the rough surface topography
does not penetrate within 20 nm of the substrate.
Therefore, although the relatively featureless reflectivity
curve doesn’t allow us to determine precise details
regarding the composition profile of the sample, we
propose that there has been close to full dissolution of
the 20 nm bottom PCBM layer into the P3HT in this
sample. Preservation of a distinct high-SLD layer of
approximately 20 nm thickness at the substrate would
give rise to significant fringes due to this layer, even in
the presence of very large surface roughness [such as in
Figs. 6(d)–6(f)], and significant interface roughness
(see Fig. S6), and we therefore propose that such a layer
does not exist. Finally, we note that a more definitive
investigation of the composition profile within such
a sample could, in principle, be performed by examining
the off-specular scattering due to the lateral roughness in
this sample. However, our previous experience in such
off-specular analysis41 is that one requires off-specular
data from a systematic series of samples, with much
better counting statistics than those available in the
present study.

Given that the 80 nm P3HT sample contains ;20%
PCBM in total, and that the loading of PCBM within the
P3HT-rich layer in the 35 nm P3HT samples at both
140 and 170 °C is 18–20%, these findings are consistent
with the previous report by H. Chen et al.17 of a maximum
PCBM volume fraction of around 20% within regiore-
gular P3HT. However, we would like to also point out
that the thickness dependence seen in Figs. 5 and S2 is
qualitatively different to that seen by H. Chen et al. In
their study (in which the PCBM layer thickness, the
P3HT layer thickness and the ratio of the two, all change
from one sample to the next) H. Chen et al. report more
significant surface enrichment of PCBM (a larger surface
excess) for samples containing a higher fraction of
PCBM. In contrast, our results (for bilayers in which
the fraction of PCBM in the sample is controlled by
changing the P3HT thickness only) show no evidence for
surface enrichment for the higher PCBM fraction (;36
and 71%) samples, with tentative evidence of possible
surface enrichment by PCBM at a lower PCBM fraction
(;20%) only.

Previous experiments with regiorandom and regiore-
gular P3HT have demonstrated high levels of miscibility
between PCBM and amorphous P3HT at 140 and 150 °C,
with the volume fraction of PCBM mixing into the P3HT
layer within a regioregular-P3HT/PCBM bilayer being
strongly influenced by the crystallinity in the P3HT layer

prior to bilayer annealing.15,20,31 The similar PCBM
loadings found in the present study at 140 and 170 °C
lend further credence to this view, given the relatively
modest (;10%) reported increase in crystalline P3HT
content during bilayer annealing.31 After bilayer anneal-
ing (for up to 60 s) Ro et al.31 find that the PCBM
volume fraction within as-cast regioregular P3HT layers
is approximately 40%, while thermally pre-annealed
P3HT layers only take up around 20% PCBM. Approx-
imate PCBM uptake levels of both 4014 and 20%17 are
reported in other studies. However, pre-annealing of the
P3HT is not performed in either of these studies, and so
cannot account for this difference. The difference in
PCBM uptake levels reported in the regioregular P3HT
studies cannot also be attributed to different solvents
used to deposit the P3HT layer; the studies by Ro et al.
and H. Chen et al. both use dichlorobenzene, while the
present study uses toluene as the solvent for P3HT and
finds similar uptake levels to H. Chen et al.17 D. Chen
et al.15 also report nonuniform PCBM and P3HT
distributions in annealed bilayers (fabricated from
PCBM and as-cast regioregular P3HT) with a total
PCBM content of 38%. It is therefore not completely
clear at present why there is such a range of composition
profiles found across various studies. Ro et al.31 propose
that the P3HT microstructure, as well as the crystalline
fraction, are likely to be key, and one would expect that
this might be significantly influenced by the degree of
regioregularity or the molecular weight distribution of
the P3HT. However, one other possible factor could be
the thickness of either the PCBM or polymer layer.
There is significant variation in layer thicknesses across
the studies performed to-date, and our recent work on
model PCBM/PS and PCBM/P3HT bilayers has shown
that there is a strong dependence of both the PCBM and
P3HT crystal microstructure and nanostructure on the
thickness of both layers.26

IV. CONCLUSION

In situ and ex situ neutron reflectivity has been used to
characterize annealed regioregular-P3HT/PCBM bilayers
on silicon, as a function of annealing temperature and
P3HT layer thickness. This reveals mixing of PCBM and
P3HT at a similar level to that reported by some previous
workers. Examination of in situ annealed samples has
allowed us to monitor the rapid development of mixing.
Careful analysis of ex situ annealed samples has allowed
us to robustly evaluate the evidence for the formation of
composition profiles that can be parameterized as simple
bilayers or as more complex profiles. We also propose
that the potential interplay between layer thickness and
crystal microstructure/nanostructure should lead to care-
ful control/consideration of layer thicknesses, when
performing comparative studies.
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