2,700 research outputs found
Past electron-positron g-2 experiments yielded sharpest bound on CPT violation for point particles
In our past experiments on a single electron and positron we measured the
cyclotron and spin-cyclotron difference frequencies omega_c and omega_a and the
ratios a = omega_a/ omega_c at omega_c = 141 Ghz for e^- and e^+ and later,
only for e^-, also at 164 Ghz. Here, we do extract from these data, as had not
done before, a new and very different figure of merit for violation of CPT
symmetry, one similar to the widely recognized impressive limit |m_Kaon -
m_Antikaon|/m_Kaon < 10^-18 for the K-mesons composed of two quarks. That
expression may be seen as comparing experimental relativistic masses of
particle states before and after the C, P, T operations had transformed
particle into antiparticle. Such a similar figure of merit for a non-composite
and quite different lepton, found by us from our Delta a = a^- - a^+ data, was
even smaller, h_bar |omega_a^- - omega_a^+|/2m_0 c^2 = |Delta a| h_bar
omega_c/2m_0 c^2) < 3(12) 10^-22.Comment: Improved content, Editorially approved for publication in PRL, LATEX
file, 5 pages, no figures, 16
Self-Excitation and Feedback Cooling of an Isolated Proton
The first one-proton self-excited oscillator (SEO) and one-proton feedback
cooling are demonstrated. In a Penning trap with a large magnetic gradient, the
SEO frequency is resolved to the high precision needed to detect a one-proton
spin flip. This is after undamped magnetron motion is sideband-cooled to a 14
mK theoretical limit, and despite random frequency shifts (larger than those
from a spin flip) that take place every time sideband cooling is applied in the
gradient. The observations open a possible path towards a million-fold improved
comparison of the antiproton and proton magnetic moments
Theoretical energies of low-lying states of light helium-like ions
Rigorous quantum electrodynamical calculation is presented for energy levels
of the 1^1S, 2^1S, 2^3S, 2^1P_1, and 2^3P_{0,1,2} states of helium-like ions
with the nuclear charge Z=3...12. The calculational approach accounts for all
relativistic, quantum electrodynamical, and recoil effects up to orders
m\alpha^6 and m^2/M\alpha^5, thus advancing the previously reported theory of
light helium-like ions by one order in \alpha.Comment: 18 pages, 9 tables, 1 figure, with several misprints correcte
Quantum Logic with a Single Trapped Electron
We propose the use of a trapped electron to implement quantum logic
operations. The fundamental controlled-NOT gate is shown to be feasible. The
two quantum bits are stored in the internal and external (motional) degrees of
freedom.Comment: 7 Pages, REVTeX, No Figures, To appear in Phys. Rev.
High spatial resolution restoration of IRAS images
A general technique to improve the spatial resolution of the IRAS AO data was developed at The Aerospace Corporation using the Maximum Entropy algorithm of Skilling and Gull. The technique has been applied to a variety of fields and several individual AO MACROS. With this general technique, resolutions of 15 arcsec were achieved in 12 and 25 micron images and 30 arcsec in 60 and 100 micron images. Results on galactic plane fields show that both photometric and positional accuracy achieved in the general IRAS survey are also achieved in the reconstructed images
CPT and Lorentz Tests in Penning Traps
A theoretical analysis is performed of Penning-trap experiments testing CPT
and Lorentz symmetry through measurements of anomalous magnetic moments and
charge-to-mass ratios. Possible CPT and Lorentz violations arising from
spontaneous symmetry breaking at a fundamental level are treated in the context
of a general extension of the SU(3) x SU(2) x U(1) standard model and its
restriction to quantum electrodynamics. We describe signals that might appear
in principle, introduce suitable figures of merit, and estimate CPT and Lorentz
bounds attainable in present and future Penning-trap experiments. Experiments
measuring anomaly frequencies are found to provide the sharpest tests of CPT
symmetry. Bounds are attainable of approximately in the
electron-positron case and of for a suggested experiment with
protons and antiprotons. Searches for diurnal frequency variations in these
experiments could also limit certain types of Lorentz violation to the level of
in the electron-positron system and others at the level of
in the proton-antiproton system. In contrast, measurements comparing
cyclotron frequencies are sensitive within the present theoretical framework to
different kinds of Lorentz violation that preserve CPT. Constraints could be
obtained on one figure of merit in the electron-positron system at the level of
, on another in the proton-antiproton system at , and on a
third at using comparisons of ions with antiprotons.Comment: 31 pages, published in Physical Review
Everyone Makes Mistakes - Including Feynman
This talk is dedicated to Alberto Sirlin in celebration of his seventieth
birthday. I wish to convey my deep appreciation of his many important
contributions to particle physics over 40 years and look forward to many more
years of productive research.Comment: 16 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLN
- …