188 research outputs found

    Charged Higgs bosons from the 3-3-1 models and the R(D(∗))\mathcal{R}(D^{(*)}) anomalies

    Get PDF
    Several anomalies in the semileptonic B-meson decays such as R(D(∗))\mathcal{R}(D^{(*)}) have been reported by BABARBABAR, Belle, and LHCb collaborations recently. In this paper, we investigate the contributions of the charged Higgs bosons from the 3-3-1 models to the R(D(∗))\mathcal{R}(D^{(*)}) anomalies. We find that, in a wide range of parameter space, the 3-3-1 models might give reasonable explanations to the R(D(∗))\mathcal{R}(D^{(*)}) anomalies and other analogous anomalies of the B meson's semileptonic decays.Comment: Accpeted by Physical Review

    General approach to quantum mechanics as a statistical theory

    Get PDF
    Since the very early days of quantum theory there have been numerous attempts to interpret quantum mechanics as a statistical theory. This is equivalent to describing quantum states and ensembles together with their dynamics entirely in terms of phase-space distributions. Finite dimensional systems have historically been an issue. In recent works [Phys. Rev. Lett. 117, 180401 (2016) and Phys. Rev. A 96, 022117 (2017)] we presented a framework for representing any quantum state as a complete continuous Wigner function. Here we extend this work to its partner function—the Weyl function. In doing so we complete the phase-space formulation of quantum mechanics—extending work by Wigner, Weyl, Moyal, and others to any quantum system. This work is structured in three parts. First we provide a brief modernized discussion of the general framework of phase-space quantum mechanics. We extend previous work and show how this leads to a framework that can describe any system in phase space—putting it for the first time on a truly equal footing to Schrödinger's and Heisenberg's formulation of quantum mechanics. Importantly, we do this in a way that respects the unifying principles of “parity” and “displacement” in a natural broadening of previously developed phase-space concepts and methods. Secondly we consider how this framework is realized for different quantum systems; in particular we consider the proper construction of Weyl functions for some example finite dimensional systems. Finally we relate the Wigner and Weyl distributions to statistical properties of any quantum system or set of systems

    Slogging and Stumbling Toward Social Justice in a Private Elementary School: The Complicated Case of St. Malachy

    Get PDF
    This case study examines St. Malachy, an urban Catholic elementary school primarily serving children traditionally marginalized by race, class, linguistic heritage, and disability. As a private school, St. Malachy serves the public good by recruiting and retaining such traditionally marginalized students. As empirical studies involving Catholic schools frequently juxtapose them with public schools, the author presents this examination from a different tack. Neither vilifying nor glorifying Catholic schooling, this study critically examines the pursuit of social justice in this school context. Data gathered through a 1-year study show that formal and informal leaders in St. Malachy adapted their governance, aggressively sought community resources, and focused their professional development to build the capacity to serve their increasingly pluralistic student population. The analysis confirms the deepening realization that striving toward social justice is a messy, contradictory, and complicated pursuit, and that schools in both public and private sectors are allies in this pursuit

    The Plasma and Suprathermal Ion Composition (PLASTIC) Investigation on the STEREO Observatories

    Full text link

    Comparative effectiveness of autologous hematopoietic stem cell transplant vs fingolimod, natalizumab, and ocrelizumab in highly active relapsing-remitting multiple sclerosis

    Get PDF
    Importance: Autologous hematopoietic stem cell transplant (AHSCT) is available for treatment of highly active multiple sclerosis (MS). Objective: To compare the effectiveness of AHSCT vs fingolimod, natalizumab, and ocrelizumab in relapsing-remitting MS by emulating pairwise trials. Design, Setting, and Participants: This comparative treatment effectiveness study included 6 specialist MS centers with AHSCT programs and international MSBase registry between 2006 and 2021. The study included patients with relapsing-remitting MS treated with AHSCT, fingolimod, natalizumab, or ocrelizumab with 2 or more years study follow-up including 2 or more disability assessments. Patients were matched on a propensity score derived from clinical and demographic characteristics. Exposure: AHSCT vs fingolimod, natalizumab, or ocrelizumab. Main outcomes: Pairwise-censored groups were compared on annualized relapse rates (ARR) and freedom from relapses and 6-month confirmed Expanded Disability Status Scale (EDSS) score worsening and improvement. Results: Of 4915 individuals, 167 were treated with AHSCT; 2558, fingolimod; 1490, natalizumab; and 700, ocrelizumab. The prematch AHSCT cohort was younger and with greater disability than the fingolimod, natalizumab, and ocrelizumab cohorts; the matched groups were closely aligned. The proportion of women ranged from 65% to 70%, and the mean (SD) age ranged from 35.3 (9.4) to 37.1 (10.6) years. The mean (SD) disease duration ranged from 7.9 (5.6) to 8.7 (5.4) years, EDSS score ranged from 3.5 (1.6) to 3.9 (1.9), and frequency of relapses ranged from 0.77 (0.94) to 0.86 (0.89) in the preceding year. Compared with the fingolimod group (769 [30.0%]), AHSCT (144 [86.2%]) was associated with fewer relapses (ARR: mean [SD], 0.09 [0.30] vs 0.20 [0.44]), similar risk of disability worsening (hazard ratio [HR], 1.70; 95% CI, 0.91-3.17), and higher chance of disability improvement (HR, 2.70; 95% CI, 1.71-4.26) over 5 years. Compared with natalizumab (730 [49.0%]), AHSCT (146 [87.4%]) was associated with marginally lower ARR (mean [SD], 0.08 [0.31] vs 0.10 [0.34]), similar risk of disability worsening (HR, 1.06; 95% CI, 0.54-2.09), and higher chance of disability improvement (HR, 2.68; 95% CI, 1.72-4.18) over 5 years. AHSCT (110 [65.9%]) and ocrelizumab (343 [49.0%]) were associated with similar ARR (mean [SD], 0.09 [0.34] vs 0.06 [0.32]), disability worsening (HR, 1.77; 95% CI, 0.61-5.08), and disability improvement (HR, 1.37; 95% CI, 0.66-2.82) over 3 years. AHSCT-related mortality occurred in 1 of 159 patients (0.6%). Conclusion: In this study, the association of AHSCT with preventing relapses and facilitating recovery from disability was considerably superior to fingolimod and marginally superior to natalizumab. This study did not find evidence for difference in the effectiveness of AHSCT and ocrelizumab over a shorter available follow-up time

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Search for the Zγ decay mode of new high-mass resonances in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a search for narrow, high-mass resonances in the Zγ final state with the Z boson decaying into a pair of electrons or muons. The √s = 13 TeV pp collision data were recorded by the ATLAS detector at the CERN Large Hadron Collider and have an integrated luminosity of 140 fb−1. The data are found to be in agreement with the Standard Model background expectation. Upper limits are set on the resonance production cross section times the decay branching ratio into Zγ. For spin-0 resonances produced via gluon–gluon fusion, the observed limits at 95% confidence level vary between 65.5 fb and 0.6 fb, while for spin-2 resonances produced via gluon–gluon fusion (or quark–antiquark initial states) limits vary between 77.4 (76.1) fb and 0.6 (0.5) fb, for the mass range from 220 GeV to 3400 GeV

    Search for single vector-like B quark production and decay via B → bH(b¯b) in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for single production of a vector-like B quark decaying into a Standard Model b-quark and a Standard Model Higgs boson, which decays into a b¯b pair. The search is carried out in 139 fb−1 of √s = 13 TeV proton-proton collision data collected by the ATLAS detector at the LHC between 2015 and 2018. No significant deviation from the Standard Model background prediction is observed, and mass-dependent exclusion limits at the 95% confidence level are set on the resonance production cross-section in several theoretical scenarios determined by the couplings cW, cZ and cH between the B quark and the Standard Model W, Z and Higgs bosons, respectively. For a vector-like B occurring as an isospin singlet, the search excludes values of cW greater than 0.45 for a B resonance mass (mB) between 1.0 and 1.2 TeV. For 1.2 TeV < mB < 2.0 TeV, cW values larger than 0.50–0.65 are excluded. If the B occurs as part of a (B, Y) doublet, the smallest excluded cZ coupling values range between 0.3 and 0.5 across the investigated resonance mass range 1.0 TeV < mB < 2.0 TeV

    Search for light long-lived neutral particles that decay to collimated pairs of leptons or light hadrons in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    A search for light long-lived neutral particles with masses in the O(MeV–GeV) range is presented. The analysis targets the production of long-lived dark photons in the decay of a Higgs boson produced via gluon–gluon fusion or in association with a W boson. Events that contain displaced collimated Standard Model fermions reconstructed in the calorimeter or muon spectrometer are selected in 139 fb−1 of s√ = 13 TeV pp collision data collected by the ATLAS detector at the LHC. Background estimates for contributions from Standard Model processes and instrumental effects are extracted from data. The observed event yields are consistent with the expected background. Exclusion limits are reported on the production cross-section times branching fraction as a function of the mean proper decay length cτ of the dark photon, or as a function of the dark-photon mass and kinetic mixing parameter that quantifies the coupling between the Standard Model and potential hidden (dark) sectors. A Higgs boson branching fraction above 1% is excluded at 95% CL for a Higgs boson decaying into two dark photons for dark-photon mean proper decay lengths between 10 mm and 250 mm and dark photons with masses between 0.4 GeV and 2 GeV

    Inclusive-photon production and its dependence on photon isolation in pp collisions at s√ = 13 TeV using 139 fb−1 of ATLAS data

    Get PDF
    Measurements of differential cross sections are presented for inclusive isolated-photon production in pp collisions at a centre-of-mass energy of 13 TeV provided by the LHC and using 139 fb−1 of data recorded by the ATLAS experiment. The cross sections are measured as functions of the photon transverse energy in different regions of photon pseudorapidity. The photons are required to be isolated by means of a fixed-cone method with two different cone radii. The dependence of the inclusive-photon production on the photon isolation is investigated by measuring the fiducial cross sections as functions of the isolation-cone radius and the ratios of the differential cross sections with different radii in different regions of photon pseudorapidity. The results presented in this paper constitute an improvement with respect to those published by ATLAS earlier: the measurements are provided for different isolation radii and with a more granular segmentation in photon pseudorapidity that can be exploited in improving the determination of the proton parton distribution functions. These improvements provide a more in-depth test of the theoretical predictions. Next-to-leading-order QCD predictions from JETPHOX and SHERPA and next-to-next-to-leading-order QCD predictions from NNLOJET are compared to the measurements, using several parameterisations of the proton parton distribution functions. The measured cross sections are well described by the fixed-order QCD predictions within the experimental and theoretical uncertainties in most of the investigated phase-space region
    • 

    corecore