7 research outputs found

    A modified symmetric local binary pattern for image features extraction

    Get PDF
    The process of identifying images and patterns is one of the most important processes of digital image processing, which is used in many applications such as fingerprint recognition, face recognition and pattern recognition. Due to the large size of the image, the process of identifying the image requires a great time, which in turn leads us to extract some characteristics of the magnitude of the volume, which can be used as an identifier to retrieve the image or recognize it and thus we have devoted a lot of time to identify the image. In this research paper, a modified symmetric local binary pattern (MSLBP) method was proposed to extract texture features. The proposed algorithm was implemented on many digital fingerprint’s images and the local structure features of these images were obtained. Several image recognition experiments are conducted on these features and compared with other algorithms. The results of the proposed algorithm showed that the digital image was represented in a very small size and furthermore the speed and accuracy of image recognition based on the proposed method was increased significantly. Unlike the methods based on LBP, the proposed method gives the same features of the image even if the image was rotated with any angle

    A planar UWB semicircular-shaped monopole antenna with quadruple band notch for WiMAX, ARN, WLAN, and X-Band

    Get PDF
    This paper proposed quadruple notched frequency bands ultra-wideband (UWB) antenna. The antenna is a semicircular-shaped monopole type of a compact size 36x24 mm, covering frequency range of 3.02-14 GHz. Four rejected narrow bands including WiMAX (3.3-3.7GHz), ARN (4.2-4.5 GHz), WLAN (5.15-5.825GHz), X-Band (7.25-7.75) have been achieved using inserting slots techniques in the patch, feed line, and ground plane. The slots dimensions have been optimized for the required reject bands. The antenna design and analysis have been investigated by simulation study using CST-EM software package. The antenna characteristics including impedance bandwidth, surface current, gain, radiation efficiency, radiation pattern have been discussed

    A NOVEL SIMPLE AND HIGHLY SECURE METHOD FOR DATA ENCRYPTION-DECRYPTION

    Get PDF
    In the course of the past 30 years, data has become pivotal to all aspects of human life. Data generated, captured, and replicated are increasing in size and expanding applications. The proliferation of fast wireless networks has encouraged data storage within the cloud. So, protecting data from attackers has become urgent to maintain its security and confidentiality, need for security and privacy technologies, systems, and processes to address it. This research paper proposes a simple and highly secure encryption decryption (SHSED) algorithm that can be used for cloud computing-based applications. It achieves the Shannon’s concept of diffusion and confusion by the involvement of logical operations, such as XORing, addition, and subtraction in addition to byte shifting. It is also characterized by the flexibility in the secret key length and the number of rounds. Experimental results have demonstrated powerful security level and a clear improvement in the encryption execution time measurements and security strength as compared with cryptosystems widely used in cloud computing

    The effect of changing the formation of multiple input multiple output antennas on the gain

    Get PDF
    In this paper, different 2×1 and 2×2 multiple input multiple output (MIMO) antennas were investigated with changing substrate shapes and changing the placing of the patches on the substrate, all the investigated antennas based on FR-4 substrate are characterized by , and loss , with a partial ground. The original antenna covered 3.4 to 13.5 GHz. The best simulation results of the proposed 2×1 MIMO antenna received for 2×1 inverted with high ultra-wideband (UWB) with bandwidth up to 40 GHz, the received maximum gain was up to 6.51 dB, with an average gain of more than the original single antenna at about +1.27 dB. The best of eight 2×2 MIMO antennas configurations that give good results were shown. The best-received gain compared with a single antenna gain were at 4.2 GHz about +2.73, +1.17, and +0.92 dB for plus-shaped, loop, and chair-shaped respectively. A comparison between the proposed MIMO antennas and other reported works were done. The proposed MIMO antennas give a good maximum gain and are suitable for different narrow bands within the UWB such as wireless local area network (WLAN), worldwide interoperability for microwave access (WiMAX), aeronautical radio navigation (ARN), International Telecommunication Union 8-GHz (ITU-8), and X-Band applications with the ability to give high gain without the need to increase the radiated power of the transmitter antenna

    A compact UWB monopole antenna with penta band notched characteristics

    Get PDF
    A modified rectangular monopole ultra-wideband (UWB) antenna with penta notched frequency bands is presented. An inverted U shaped and slanted U-shaped on the radiating patch are inserted to achieve WiMAX and ARN bands rejection respectively, two mirrored summation Σ-shaped and four mirrored 5-shaped slots are inserted on the partial ground to achieve WLAN and X-band bands rejection respectively, finally rectangular shaped slot with partially open on the feed is inserted to achieve ITU-8 band rejection. The proposed antenna which was simulated has a compact size 30×35×1.6 m3. It is operated with impedance bandwidth 2.8-10.6 GHz at |S11| < −10 dB, that supported UWB bandwidth with filtering the five narrowbands that avoid the possible interference with them. The simulated resonant frequency for notched filters received 3.55, 4.55, 5.53, 7.45, 8.16 GHZ, for WiMAX, ARN, WLAN, X-Band, ITU-8 respectively. The proposed antenna is suitable for wireless communication such as mobile communication and internet of everything (IoE). Throughout this paper, CST-EM software package was used for the design implementation. Surface current distributions for all notched filters were investigated and shown that it is concentrated around the feeding point and the inserted notched slots proving that there is no radiation to the space due to maximum stored electromagnetic energy around each investigated notch slot, proving that the slots play a role of a quarter wavelength transformer which generates for each notched band, maximum gain, and radiation pattern are also investigated

    A new method for voice signal features creation

    Get PDF
    Digital audio is one of the most important types of data at present. It is used in several applications, such as human knowledge and many security and banking applications. A digital voice signal is usually of a large size where the acoustic signal consists of a set of values distributed in one column (one channel) (mono signal) or distributed in two columns (two channels) (stereo signal), these values usually are the results of sampling and quantization of the original analogue voice signal. In this paper we will introduce a method which can be used to create a signature or key, which can be used later to identify or recognize the wave file. The proposed method will be implemented and tested to show the accuracy and flexibility of this method
    corecore