31 research outputs found

    Single Synapse Indicators of Impaired Glutamate Clearance Derived from Fast iGluu Imaging of Cortical Afferents in the Striatum of Normal and Huntington (Q175) Mice

    Get PDF
    Changes in the balance between glutamate (Glu) release and uptake may stimulate synaptic reorganization and even synapse loss. In the case of neurodegeneration, a mismatch between astroglial Glu uptake and presynaptic Glu release could be detected if both parameters were assessed independently and at a single-synapse level. This has now become possible due to a new imaging assay with the genetically encoded ultrafast Glu sensor iGluu. We report findings from individual corticostriatal synapses in acute slices prepared from mice of either sex that were >1 year of age. Contrasting patterns of short-term plasticity and a size criterion identified two classes of terminals, presumably corresponding to the previously defined IT (intratelencephalic) and PT (pyramidal tract) synapses. The latter exhibited a higher degree of frequency potentiation/residual Glu accumulation and were selected for our first iGluu single-synapse study in Q175 mice, a model of Huntington's disease (HD). In HD mice, the decay time constant of the perisynaptic Glu concentration (TauD), as an indicator of uptake, and the peak iGluu amplitude, as an indicator of release, were prolonged and reduced, respectively. Treatment of WT preparations with the astrocytic Glu uptake blocker TFB-TBOA (100 nm) mimicked the TauD changes in homozygotes. Considering the largest TauD values encountered in WT, ∼40% of PT synapses tested in Q175 heterozygotes can be classified as dysfunctional. Moreover, HD but not WT synapses exhibited a positive correlation between TauD and the peak amplitude of iGluu. Finally, EAAT2 (excitatory amino acid transport protein 2) immunoreactivity was reduced next to corticostriatal terminals. Thus, astrocytic Glu transport remains a promising target for therapeutic intervention

    Technology of protection and control of printed products using application programs of digital introscopy

    Get PDF
    The article presents the basics of the method of correlation spatial-frequency filtering of maps of phase distributions of polyethylene films. Using the method of statistical analysis of the structure of spatial-frequency filtered polarization mapsof polymer films, a set of methods and criteria for diagnosingchanges in the birefringence of packaging materials has beensubstantiated and tested.У статті наведено основи методу кореляційної просторово-частотної фільтрації карток фазових розподілів поліетиленових плівок. Використовуючи метод статистичного аналізу структури просторово-частотних фільтрованих поляризаційних карт полімерних плівок, обґрунтовано та апробовано комплекс методів та критеріїв діагностики зміни двопроменеломлення пакувальних матеріалів

    Increased and synchronous recruitment of release sites underlies hippocampal mossy fiber presynaptic potentiation

    Get PDF
    Synaptic plasticity is a cellular model for learning and memory. However, the expression mechanisms underlying presynaptic forms of plasticity are not well understood. Here, we investigate functional and structural correlates of long-term potentiation at large hippocampal mossy fiber boutons induced by the adenylyl cyclase activator forskolin. We performed two-photon imaging of the genetically encoded glutamate sensor iGlu(u) that revealed an increase in the surface area used for glutamate release at potentiated terminals. Moreover, time-gated stimulated emission depletion microscopy revealed no change in the coupling distance between immunofluorescence signals from calcium channels and release sites. Finally, by high-pressure freezing and transmission electron microscopy analysis, we found a fast remodeling of synaptic ultrastructure at potentiated boutons: synaptic vesicles dispersed in the terminal and accumulated at the active zones, while active zone density and synaptic complexity increased. We suggest that these rapid and early structural rearrangements likely enable long-term increase in synaptic strength

    Recruitment of release sites underlies chemical presynaptic potentiation at hippocampal mossy fiber boutons

    Get PDF
    Synaptic plasticity is a cellular model for learning and memory. However, the expression mechanisms underlying presynaptic forms of plasticity are not well understood. Here, we investigate functional and structural correlates of presynaptic potentiation at large hippocampal mossy fiber boutons induced by the adenylyl cyclase activator forskolin. We performed 2-photon imaging of the genetically encoded glutamate sensor iGlu(u) that revealed an increase in the surface area used for glutamate release at potentiated terminals. Time-gated stimulated emission depletion microscopy revealed no change in the coupling distance between P/Q-type calcium channels and release sites mapped by Munc13-1 cluster position. Finally, by high-pressure freezing and transmission electron microscopy analysis, we found a fast remodeling of synaptic ultrastructure at potentiated boutons: Synaptic vesicles dispersed in the terminal and accumulated at the active zones, while active zone density and synaptic complexity increased. We suggest that these rapid and early structural rearrangements might enable long-term increase in synaptic strength

    Play and tickling responses map to the lateral columns of the rat periaqueductal gray

    Get PDF
    The persistence of play after decortication points to a subcortical mechanism of play control. We found that global blockade of the rat periaqueductal gray with either muscimol or lidocaine interfered with ticklishness and play. We recorded vocalizations and neural activity from the periaqueductal gray of young, playful rats during interspecific touch, play, and tickling. Rats vocalized weakly to touch and more strongly to play and tickling. Periaqueductal gray units showed diverse but strong modulation to tickling and play. Hierarchical clustering based on neuronal responses to play and tickling revealed functional clusters mapping to different periaqueductal gray columns. Specifically, we observed play-neutral/tickling-inhibited and tickling/play-neutral units in dorsolateral and dorsomedial periaqueductal gray columns. In contrast, strongly play/tickling-excited units mapped to the lateral columns and were suppressed by anxiogenic conditions. Optogenetic inactivation of lateral periaqueductal columns disrupted ticklishness and play. We conclude that the lateral periaqueductal gray columns are decisive for play and laughter

    Applied computer polarization-singular analysis of polymer packaging materials

    Get PDF
    This manuscript discusses the development of a singular approach to analyzing polarization-inhomogeneous laser fields in order to improve the manufacturing technology of packaging printing products. The analysis is based on a model approach, which represents polyethylene polymer film networks as a two-component amorphous-crystallite matrix.У статті описана розробка та обґрунтування принципів сингулярного підходу до аналізу поляризаційно-неоднорідних лазерних полів з метою вдосконалення технології виготовлення пакувальної поліграфічної продукції. У статті наведено детальні теоретичні пояснення, які допомагають зрозуміти механізми формування поляризаційно- сингулярних структур у полімерних плівках

    Uncoupling the excitatory amino acid transporter 2 from its C-terminal interactome restores synaptic glutamate clearance at corticostriatal synapses and alleviates mutant huntingtin-induced hypokinesia

    Get PDF
    Rapid removal of glutamate from the sites of glutamate release is an essential step in excitatory synaptic transmission. However, despite many years of research, the molecular mechanisms underlying the intracellular regulation of glutamate transport at tripartite synapses have not been fully uncovered. This limits the options for pharmacological treatment of glutamate-related motor disorders, including Huntington’s disease (HD). We therefore investigated the possible binding partners of transgenic EAAT2 and their alterations under the influence of mutant huntingtin (mHTT). Mass spectrometry analysis after pull-down of striatal YFP-EAAT2 from wild-type (WT) mice and heterozygote (HET) Q175 mHTT-knock-in mice identified a total of 148 significant (FDR < 0.05) binders to full-length EAAT2. Of them 58 proteins exhibited mHTT-related differences. Most important, in 26 of the 58 mHTT-sensitive cases, protein abundance changed back toward WT levels when the mice expressed a C-terminal-truncated instead of full-length variant of EAAT2. These findings motivated new attempts to clarify the role of astrocytic EAAT2 regulation in cortico-basal movement control. Striatal astrocytes of Q175 HET mice were targeted by a PHP.B vector encoding EAAT2 with different degree of C-terminal modification, i.e., EAAT2-S506X (truncation at S506), EAAT2-4KR (4 lysine to arginine substitutions) or EAAT2 (full-length). The results were compared to HET and WT injected with a tag-only vector (CTRL). It was found that the presence of a C-terminal-modified EAAT2 transgene (i) increased the level of native EAAT2 protein in striatal lysates and perisynaptic astrocyte processes, (ii) enhanced the glutamate uptake of transduced astrocytes, (iii) stimulated glutamate clearance at individual corticostriatal synapses, (iv) increased the glutamate uptake of striatal astrocytes and (iv) alleviated the mHTT-related hypokinesia (open field indicators of movement initiation). In contrast, over-expression of full-length EAAT2 neither facilitated glutamate uptake nor locomotion. Together, our results support the new hypothesis that preventing abnormal protein-protein interactions at the C-terminal of EAAT2 could eliminate the mHTT-related deficits in corticostriatal synaptic glutamate clearance and movement initiation

    Nanostructural Diversity of Synapses in the Mammalian Spinal Cord

    Get PDF
    This work for funded by the Biotechnology and Biological Sciences Research Council (BBSRC; BB/M021793/1), RS MacDonald Charitable Trust, Motor Neurone Disease (MND) Association UK (Miles/Apr18/863-791), the Engineering and Physical Sciences Research Council (EPSRC; EP/P030017/1), Welcome Trust (202932/Z/16/Z), European Research Council (ERC; 695568) and the Simons Initiative for the Developing Brain.Functionally distinct synapses exhibit diverse and complex organisation at molecular and nanoscale levels. Synaptic diversity may be dependent on developmental stage, anatomical locus and the neural circuit within which synapses reside. Furthermore, astrocytes, which align with pre and post-synaptic structures to form “tripartite synapses”, can modulate neural circuits and impact on synaptic organisation. In this study, we aimed to determine which factors impact the diversity of excitatory synapses throughout the lumbar spinal cord. We used PSD95-eGFP mice, to visualise excitatory postsynaptic densities (PSDs) using high-resolution and super-resolution microscopy. We reveal a detailed and quantitative map of the features of excitatory synapses in the lumbar spinal cord, detailing synaptic diversity that is dependent on developmental stage, anatomical region and whether associated with VGLUT1 or VGLUT2 terminals. We report that PSDs are nanostructurally distinct between spinal laminae and across age groups. PSDs receiving VGLUT1 inputs also show enhanced nanostructural complexity compared with those receiving VGLUT2 inputs, suggesting pathway-specific diversity. Finally, we show that PSDs exhibit greater nanostructural complexity when part of tripartite synapses, and we provide evidence that astrocytic activation enhances PSD95 expression. Taken together, these results provide novel insights into the regulation and diversification of synapses across functionally distinct spinal regions and advance our general understanding of the ‘rules’ governing synaptic nanostructural organisation.Publisher PDFPeer reviewe

    Extensive astrocyte synchronization advances neuronal coupling in slow wave activity in vivo

    Get PDF
    Slow wave activity (SWA) is a characteristic brain oscillation in sleep and quiet wakefulness. Although the cell types contributing to SWA genesis are not yet identified, the principal role of neurons in the emergence of this essential cognitive mechanism has not been questioned. To address the possibility of astrocytic involvement in SWA, we used a transgenic rat line expressing a calcium sensitive fluorescent protein in both astrocytes and interneurons and simultaneously imaged astrocytic and neuronal activity in vivo. Here we demonstrate, for the first time, that the astrocyte network display synchronized recurrent activity in vivo coupled to UP states measured by field recording and neuronal calcium imaging. Furthermore, we present evidence that extensive synchronization of the astrocytic network precedes the spatial build-up of neuronal synchronization. The earlier extensive recruitment of astrocytes in the synchronized activity is reinforced by the observation that neurons surrounded by active astrocytes are more likely to join SWA, suggesting causality. Further supporting this notion, we demonstrate that blockade of astrocytic gap junctional communication or inhibition of astrocytic Ca2+ transients reduces the ratio of both astrocytes and neurons involved in SWA. These in vivo findings conclusively suggest a causal role of the astrocytic syncytium in SWA generation

    Management of radiation accident on the late phase using Decision Support System RODOS and GIS technology.

    No full text
    In the event of a radiological accident, the construction of a strategy for managing the contaminated systems is an important component into the emergency response process. A wide collection of possible management options exists, but for each specific accident scenario only a subset of options appropriate for management strategy will be applied. The selection of these options depends on a range of assorted criteria (time and space, effectiveness, economic cost, radiological and environmental impact, waste disposal, legislative issues and societal and ethical aspects, for example) which, nowadays, are implemented into tools and systems to guide to the decision-makers. This work aims to analyze the usefulness and applicability of the Decision Support System (DSS) RODOS for representative Spanish situations where food production systems become contaminated after a radiological emergency. This aspect is demonstrated for developing a management strategy for one scenario involving contamination of the foodchain after a hypothetical accidental release of 137Cs and 90Sr from a Spanish NPP. For this scenario, the NWP (Numerical Weather Prediction) data of INM (National Meteorological Institute) have been considered. The deposited contamination, the activity concentration in significant agricultural products for this region, human doses and countermeasures proposed by the RODOS system have been considered and analyzed. The customization of the management process is revealed as an essential part of planning for the recovery phase after a radiological emergency. The ArcGIS technology has been complementary used together with DSS RODOS to collate, analyze and scatter information about the land use, agricultural practice, levels of contaminations of the agricultural components, being its usefulness analyzed for the customization process. This enables a more realistic and reliable exploration, analysis and query of the existing situation and allows to define the applicability and extension of some management actions and finally assists in construction of management strategy. The RODOS results of this scenario have been analyzed for accessing of the applicability of proposed management options and construction of management strategy. E.g. such management options like disposal, land amelioration, change of crop, change in land use, agricultural decontamination, removing from contaminated feed etc. have been considered and analyzed. Finally, implications and further improvements to construct efficient management strategies for Spanish situations are discussed
    corecore