82 research outputs found

    Chondrocyte secretome: a source of novel insights and exploratory biomarkers of osteoarthritis

    Get PDF
    The extracellular matrix (ECM) of articular cartilage is comprised of complex networks of proteins and glycoproteins, all of which are expressed by its resident cell, the chondrocyte. Cartilage is a unique tissue given its complexity and ability to resist repeated load and deformation. The mechanisms by which articular cartilage maintains its integrity throughout our lifetime is not fully understood, however there are numerous regulatory pathways known to govern ECM turnover in response to mechanical stimuli. To further our understanding of this field, we envision that proteomic analysis of the secretome will provide information on how the chondrocyte remodels the surrounding ECM in response to load, in addition to providing information on the metabolic state of the cell. In this review, we attempt to summarize the recent mass spectrometry-based proteomic discoveries in healthy and diseased cartilage and chondrocytes, to facilitate the discovery of novel biomarkers linked to degenerative pathologies, such as osteoarthritis (OA)

    Activation of Sirt1 by Resveratrol Inhibits TNF-α Induced Inflammation in Fibroblasts

    Get PDF
    Inflammation is one of main mechanisms of autoimmune disorders and a common feature of most diseases. Appropriate suppression of inflammation is a key resolution to treat the diseases. Sirtuin1 (Sirt1) has been shown to play a role in regulation of inflammation. Resveratrol, a potent Sirt1 activator, has anti-inflammation property. However, the detailed mechanism is not fully understood. In this study, we investigated the anti-inflammation role of Sirt1 in NIH/3T3 fibroblast cell line. Upregulation of matrix metalloproteinases 9 (MMP-9), interleukin-1beta (IL-1β), IL-6 and inducible nitric oxide synthase (iNOS) were induced by tumor necrosis factor alpha (TNF-α) in 3T3 cells and resveratrol suppressed overexpression of these pro-inflammatory molecules in a dose-dependent manner. Knockdown of Sirt1 by RNA interference caused 3T3 cells susceptible to TNF-α stimulation and diminished anti-inflammatory effect of resveratrol. We also explored potential anti-inflammatory mechanisms of resveratrol. Resveratrol reduced NF-κB subunit RelA/p65 acetylation, which is notably Sirt1 dependent. Resveratrol also attenuated phosphorylation of mammalian target of rapamycin (mTOR) and S6 ribosomal protein (S6RP) while ameliorating inflammation. Our data demonstrate that resveratrol inhibits TNF-α-induced inflammation via Sirt1. It suggests that Sirt1 is an efficient target for regulation of inflammation. This study provides insight on treatment of inflammation-related diseases

    The Role of Sirtuins in Cartilage Homeostasis and Osteoarthritis

    No full text

    The Role of Sirtuins in Cartilage Homeostasis and Osteoarthritis (vol 18, 43, 2016)

    No full text
    corecore