39 research outputs found

    Towards in cellulo virus crystallography

    Get PDF
    Viruses are a significant threat to both human health and the economy, and there is an urgent need for novel anti-viral drugs and vaccines. High-resolution viral structures inform our understanding of the virosphere, and inspire novel therapies. Here we present a method of obtaining such structural information that avoids potentially disruptive handling, by collecting diffraction data from intact infected cells. We identify a suitable combination of cell type and virus to accumulate particles in the cells, establish a suitable time point where most cells contain virus condensates and use electron microscopy to demonstrate that these are ordered crystalline arrays of empty capsids. We then use an X-ray free electron laser to provide extremely bright illumination of sub-micron intracellular condensates of bacteriophage phiX174 inside living Escherichia coli at room temperature. We have been able to collect low resolution diffraction data. Despite the limited resolution and completeness of these initial data, due to a far from optimal experimental setup, we have used novel methodology to determine a putative space group, unit cell dimensions, particle packing and likely maturation state of the particles.Peer reviewe

    Neutralization potency of monoclonal antibodies recognizing dominant and subdominant epitopes on SARS-CoV-2 Spike is impacted by the B.1.1.7 variant

    Get PDF
    Interaction of the SARS-CoV-2 Spike receptor binding domain (RBD) with the receptor ACE2 on host cells is essential for viral entry. RBD is the dominant target for neutralizing antibodies, and several neutralizing epitopes on RBD have been molecularly characterized. Analysis of circulating SARS-CoV-2 variants has revealed mutations arising in the RBD, N-terminal domain (NTD) and S2 subunits of Spike. To understand how these mutations affect Spike antigenicity, we isolated and characterized >100 monoclonal antibodies targeting epitopes on RBD, NTD, and S2 from SARS-CoV-2-infected individuals. Approximately 45% showed neutralizing activity, of which ∼20% were NTD specific. NTD-specific antibodies formed two distinct groups: the first was highly potent against infectious virus, whereas the second was less potent and displayed glycan-dependant neutralization activity. Mutations present in B.1.1.7 Spike frequently conferred neutralization resistance to NTD-specific antibodies. This work demonstrates that neutralizing antibodies targeting subdominant epitopes should be considered when investigating antigenic drift in emerging variants

    A structure-function analysis shows SARS-CoV-2 BA.2.86 balances antibody escape and ACE2 affinity.

    Get PDF
    BA.2.86, a recently described sublineage of SARS-CoV-2 Omicron, contains many mutations in the spike gene. It appears to have originated from BA.2 and is distinct from the XBB variants responsible for many infections in 2023. The global spread and plethora of mutations in BA.2.86 has caused concern that it may possess greater immune-evasive potential, leading to a new wave of infection. Here, we examine the ability of BA.2.86 to evade the antibody response to infection using a panel of vaccinated or naturally infected sera and find that it shows marginally less immune evasion than XBB.1.5. We locate BA.2.86 in the antigenic landscape of recent variants and look at its ability to escape panels of potent monoclonal antibodies generated against contemporary SARS-CoV-2 infections. We demonstrate, and provide a structural explanation for, increased affinity of BA.2.86 to ACE2, which may increase transmissibility

    A delicate balance between antibody evasion and ACE2 affinity for Omicron BA.2.75

    Get PDF
    Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have caused successive global waves of infection. These variants, with multiple mutations in the spike protein, are thought to facilitate escape from natural and vaccine-induced immunity and often increase in affinity for ACE2. The latest variant to cause concern is BA.2.75, identified in India where it is now the dominant strain, with evidence of wider dissemination. BA.2.75 is derived from BA.2 and contains four additional mutations in the receptor-binding domain (RBD). Here, we perform an antigenic and biophysical characterization of BA.2.75, revealing an interesting balance between humoral evasion and ACE2 receptor affinity. ACE2 affinity for BA.2.75 is increased 9-fold compared with BA.2; there is also evidence of escape of BA.2.75 from immune serum, particularly that induced by Delta infection, which may explain the rapid spread in India, where where there is a high background of Delta infection. ACE2 affinity appears to be prioritized over greater escape

    Rapid escape of new SARS-CoV-2 Omicron variants from BA.2-directed antibody responses

    Get PDF
    In November 2021, Omicron BA.1, containing a raft of new spike mutations, emerged and quickly spread globally. Intense selection pressure to escape the antibody response produced by vaccines or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection then led to a rapid succession of Omicron sub-lineages with waves of BA.2 and then BA.4/5 infection. Recently, many variants have emerged such as BQ.1 and XBB, which carry up to 8 additional receptor-binding domain (RBD) amino acid substitutions compared with BA.2. We describe a panel of 25 potent monoclonal antibodies (mAbs) generated from vaccinees suffering BA.2 breakthrough infections. Epitope mapping shows potent mAb binding shifting to 3 clusters, 2 corresponding to early-pandemic binding hotspots. The RBD mutations in recent variants map close to these binding sites and knock out or severely knock down neutralization activity of all but 1 potent mAb. This recent mAb escape corresponds with large falls in neutralization titer of vaccine or BA.1, BA.2, or BA.4/5 immune serum

    SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses

    Get PDF
    On 24th November 2021, the sequence of a new SARS-CoV-2 viral isolate Omicron-B.1.1.529 was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titers of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic Alpha, Beta, Gamma, or Delta are substantially reduced, or the sera failed to neutralize. Titers against Omicron are boosted by third vaccine doses and are high in both vaccinated individuals and those infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of the large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses and uses mutations that confer tight binding to ACE2 to unleash evolution driven by immune escape. This leads to a large number of mutations in the ACE2 binding site and rebalances receptor affinity to that of earlier pandemic viruses

    Towards in cellulo virus crystallography

    No full text
    Viruses are a significant threat to both human health and the economy, and there is an urgent need for novel anti-viral drugs and vaccines. High-resolution viral structures inform our understanding of the virosphere, and inspire novel therapies. Here we present a method of obtaining such structural information that avoids potentially disruptive handling, by collecting diffraction data from intact infected cells. We identify a suitable combination of cell type and virus to accumulate particles in the cells, establish a suitable time point where most cells contain virus condensates and use electron microscopy to demonstrate that these are ordered crystalline arrays of empty capsids. We then use an X-ray free electron laser to provide extremely bright illumination of sub-micron intracellular condensates of bacteriophage phiX174 inside living Escherichia coli at room temperature. We have been able to collect low resolution diffraction data. Despite the limited resolution and completeness of these initial data, due to a far from optimal experimental setup, we have used novel methodology to determine a putative space group, unit cell dimensions, particle packing and likely maturation state of the particles
    corecore