81 research outputs found

    VIS: the visible imager for Euclid

    Get PDF
    Euclid-VIS is a large format visible imager for the ESA Euclid space mission in their Cosmic Vision program, scheduled for launch in 2019. Together with the near infrared imaging within the NISP instrument it forms the basis of the weak lensing measurements of Euclid. VIS will image in a single r+i+z band from 550-900 nm over a field of view of ~0.5 deg2. By combining 4 exposures with a total of 2240 sec, VIS will reach to V=24.5 (10{\sigma}) for sources with extent ~0.3 arcsec. The image sampling is 0.1 arcsec. VIS will provide deep imaging with a tightly controlled and stable point spread function (PSF) over a wide survey area of 15000 deg2 to measure the cosmic shear from nearly 1.5 billion galaxies to high levels of accuracy, from which the cosmological parameters will be measured. In addition, VIS will also provide a legacy imaging dataset with an unprecedented combination of spatial resolution, depth and area covering most of the extra-Galactic sky. Here we will present the results of the study carried out by the Euclid Consortium during the Euclid Definition phase.Comment: 10 pages, 6 figure

    Social sciences research in neglected tropical diseases 2: A bibliographic analysis

    Get PDF
    The official published version of the article can be found at the link below.Background There are strong arguments for social science and interdisciplinary research in the neglected tropical diseases. These diseases represent a rich and dynamic interplay between vector, host, and pathogen which occurs within social, physical and biological contexts. The overwhelming sense, however, is that neglected tropical diseases research is a biomedical endeavour largely excluding the social sciences. The purpose of this review is to provide a baseline for discussing the quantum and nature of the science that is being conducted, and the extent to which the social sciences are a part of that. Methods A bibliographic analysis was conducted of neglected tropical diseases related research papers published over the past 10 years in biomedical and social sciences. The analysis had textual and bibliometric facets, and focussed on chikungunya, dengue, visceral leishmaniasis, and onchocerciasis. Results There is substantial variation in the number of publications associated with each disease. The proportion of the research that is social science based appears remarkably consistent (<4%). A textual analysis, however, reveals a degree of misclassification by the abstracting service where a surprising proportion of the "social sciences" research was pure clinical research. Much of the social sciences research also tends to be "hand maiden" research focused on the implementation of biomedical solutions. Conclusion There is little evidence that scientists pay any attention to the complex social, cultural, biological, and environmental dynamic involved in human pathogenesis. There is little investigator driven social science and a poor presence of interdisciplinary science. The research needs more sophisticated funders and priority setters who are not beguiled by uncritical biomedical promises

    Rosina - Rosetta Orbiter Spectrometer for Ion and Neutral Analysis

    Get PDF
    The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) will answer important questions posed by the mission's main objectives. After Giotto, this will be the first time the volatile part of a comet will be analyzed in situ. This is a very important investigation, as comets, in contrast to meteorites, have maintained most of the volatiles of the solar nebula. To accomplish the very demanding objectives through all the different phases of the comet's activity, ROSINA has unprecedented capabilities including very wide mass range (1 to >300 amu), very high mass resolution (m/Δ m > 3000, i.e. the ability to resolve CO from N2 and 13C from 12CH), very wide dynamic range and high sensitivity, as well as the ability to determine cometary gas velocities, and temperature. ROSINA consists of two mass spectrometers for neutrals and primary ions with complementary capabilities and a pressure sensor. To ensure that absolute gas densities can be determined, each mass spectrometer carries a reservoir of a calibrated gas mixture allowing in-flight calibration. Furthermore, identical flight-spares of all three sensors will serve for detailed analysis of all relevant parameters, in particular the sensitivities for complex organic molecules and their fragmentation patterns in our electron bombardment ion source

    Identification of Roles for Peptide: N-Glycanase and Endo-β-N-Acetylglucosaminidase (Engase1p) during Protein N-Glycosylation in Human HepG2 Cells

    Get PDF
    BACKGROUND: During mammalian protein N-glycosylation, 20% of all dolichol-linked oligosaccharides (LLO) appear as free oligosaccharides (fOS) bearing the di-N-acetylchitobiose (fOSGN2), or a single N-acetylglucosamine (fOSGN), moiety at their reducing termini. After sequential trimming by cytosolic endo beta-N-acetylglucosaminidase (ENGase) and Man2c1 mannosidase, cytosolic fOS are transported into lysosomes. Why mammalian cells generate such large quantities of fOS remains unexplored, but fOSGN2 could be liberated from LLO by oligosaccharyltransferase, or from glycoproteins by NGLY1-encoded Peptide-N-Glycanase (PNGase). Also, in addition to converting fOSGN2 to fOSGN, the ENGASE-encoded cytosolic ENGase of poorly defined function could potentially deglycosylate glycoproteins. Here, the roles of Ngly1p and Engase1p during fOS metabolism were investigated in HepG2 cells. METHODS/PRINCIPAL FINDINGS: During metabolic radiolabeling and chase incubations, RNAi-mediated Engase1p down regulation delays fOSGN2-to-fOSGN conversion, and it is shown that Engase1p and Man2c1p are necessary for efficient clearance of cytosolic fOS into lysosomes. Saccharomyces cerevisiae does not possess ENGase activity and expression of human Engase1p in the png1Delta deletion mutant, in which fOS are reduced by over 98%, partially restored fOS generation. In metabolically radiolabeled HepG2 cells evidence was obtained for a small but significant Engase1p-mediated generation of fOS in 1 h chase but not 30 min pulse incubations. Ngly1p down regulation revealed an Ngly1p-independent fOSGN2 pool comprising mainly Man(8)GlcNAc(2), corresponding to approximately 70% of total fOS, and an Ngly1p-dependent fOSGN2 pool enriched in Glc(1)Man(9)GlcNAc(2) and Man(9)GlcNAc(2) that corresponds to approximately 30% of total fOS. CONCLUSIONS/SIGNIFICANCE: As the generation of the bulk of fOS is unaffected by co-down regulation of Ngly1p and Engase1p, alternative quantitatively important mechanisms must underlie the liberation of these fOS from either LLO or glycoproteins during protein N-glycosylation. The fully mannosylated structures that occur in the Ngly1p-dependent fOSGN2 pool indicate an ERAD process that does not require N-glycan trimming

    Many Neglected Tropical Diseases May Have Originated in the Paleolithic or Before: New Insights from Genetics

    Get PDF
    The standard view of modern human infectious diseases is that many of them arose during the Neolithic when animals were first domesticated, or afterwards. Here we review recent genetic and molecular clock estimates that point to a much older Paleolithic origin (2.5 million years ago to 10,000 years ago) of some of these diseases. During part of this ancient period our early human ancestors were still isolated in Africa. We also discuss the need for investigations of the origin of these diseases in African primates and other animals that have been the original source of many neglected tropical diseases

    Detection and Molecular Characterization of 9000-Year-Old Mycobacterium tuberculosis from a Neolithic Settlement in the Eastern Mediterranean

    Get PDF
    Background: Mycobacterium tuberculosis is the principal etiologic agent of human tuberculosis. It has no environmental reservoir and is believed to have co-evolved with its host over millennia. This is supported by skeletal evidence of the disease in early humans, and inferred from M. tuberculosis genomic analysis. Direct examination of ancient human remains for M. tuberculosis biomarkers should aid our understanding of the nature of prehistoric tuberculosis and the host/pathogen relationship.Methodology/Principal Findings: We used conventional PCR to examine bone samples with typical tuberculosis lesions from a woman and infant, who were buried together in the now submerged site of Atlit-Yam in the Eastern Mediterranean, dating from 9250-8160 years ago. Rigorous precautions were taken to prevent contamination, and independent centers were used to confirm authenticity of findings. DNA from five M. tuberculosis genetic loci was detected and had characteristics consistent with extant genetic lineages. High performance liquid chromatography was used as an independent method of verification and it directly detected mycolic acid lipid biomarkers, specific for the M. tuberculosis complex.Conclusions/Significance: Human tuberculosis was confirmed by morphological and molecular methods in a population living in one of the first villages with evidence of agriculture and animal domestication. The widespread use of animals was not a source of infection but may have supported a denser human population that facilitated transmission of the tubercle bacillus. The similarity of the M. tuberculosis genetic signature with those of today gives support to the theory of a long-term co-existence of host and pathogen

    Virological and serological surveillance for type A influenza in the black-legged kittiwake (Rissa tridactyla)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The epidemiology of avian influenza viruses (AIVs) in gulls is only partially known. The role of the world's most numerous gull species, the black-legged kittiwake (<it>Rissa tridactyla</it>), as a potential AIV reservoir species has been unclear. The prevalence of AIV and humoral response against AIV were therefore studied in a colony of apparently healthy black-legged kittiwakes breeding in a nesting cliff in the South West Barents Region of Norway (70°22' N, 31°10' E), in 2008 and 2009.</p> <p>Results</p> <p>AIVs were detected from the oropharynx and cloaca in low amounts, with prevalences of 15% and 5%, in 2008 and 2009, respectively. Direct, partial sequencing of the hemagglutinin (HA) gene revealed that the H4 subtype was present. In 2009, antibodies to influenza A virus were detected in sera from 57 of 80 adult birds. In contrast, none of the three-week-old chicks (n = 18) tested seropositive. Hemagglutination inhibition (HI) assays demonstrated that the adult kittiwakes primarily had antibodies specific to the gull-associated H13 and H16 subtypes, with antibodies to H16 being most common.</p> <p>Conclusions</p> <p>These results support that the highly pelagic black-legged kittiwake is a reservoir of AIV. The serological findings suggest that H16 might be the main AIV subtype in the black-legged kittiwake. Further studies are needed to understand the ecology of AIV in the black-legged kittiwake and in gulls in general.</p

    Maternal Antibody Transmission in Relation to Mother Fluctuating Asymmetry in a Long-Lived Colonial Seabird: The Yellow-Legged Gull Larus michahellis

    Get PDF
    Female birds transfer antibodies to their offspring via the egg yolk, thus possibly providing passive immunity against infectious diseases to which hatchlings may be exposed, thereby affecting their fitness. It is nonetheless unclear whether the amount of maternal antibodies transmitted into egg yolks varies with female quality and egg laying order. In this paper, we investigated the transfer of maternal antibodies against type A influenza viruses (anti-AIV antibodies) by a long-lived colonial seabird, the yellow-legged gull (Larus michahellis), in relation to fluctuating asymmetry in females, i.e. the random deviation from perfect symmetry in bilaterally symmetric morphological and anatomical traits. In particular, we tested whether females with greater asymmetry transmitted fewer antibodies to their eggs, and whether within-clutch variation in yolk antibodies varied according to the maternal level of fluctuating asymmetry. We found that asymmetric females were in worse physical condition, produced fewer antibodies, and transmitted lower amounts of antibodies to their eggs. We also found that, within a given clutch, yolk antibody level decreased with egg laying order, but this laying order effect was more pronounced in clutches laid by the more asymmetric females. Overall, our results support the hypothesis that maternal quality interacts with egg laying order in determining the amount of maternal antibodies transmitted to the yolks. They also highlight the usefulness of fluctuating asymmetry as a sensitive indicator of female quality and immunocompetence in birds
    corecore