1,311 research outputs found
A hierarchical structure of transformation semigroups with applications to probability limit measures
The structure of transformation semigroups on a finite set is analyzed by
introducing a hierarchy of functions mapping subsets to subsets. The resulting
hierarchy of semigroups has a corresponding hierarchy of minimal ideals, or
kernels. This kernel hierarchy produces a set of tools that provides direct
access to computations of interest in probability limit theorems; in
particular, finding certain factors of idempotent limit measures. In addition,
when considering transformation semigroups that arise naturally from edge
colorings of directed graphs, as in the road-coloring problem, the hierarchy
produces simple techniques to determine the rank of the kernel and to decide
when a given kernel is a right group. In particular, it is shown that all
kernels of rank one less than the number of vertices must be right groups and
their structure for the case of two generators is described.Comment: 35 pages, 4 figure
Solar radius measurements
Preliminary results of measurements made during 1979-1980 are discussed. Variability in the radius measurements of 0.4 pi is found, of unknown origin
INITIAL CHARACTERIZATION OF MAJOR HISTOCOMPATIBILITY COMPLEX (MHC) CLASS IIB EXON 2 IN AN ENDANGERED RATTLESNAKE, THE EASTERN MASSASAUGA (SISTRURUS CATENATUS)
Genes of the major histocompatibility complex (MHC) play an important role in the vertebrate immune system and exhibit remarkably high levels of polymorphism, maintained by strong balancing selection. While the conservation implications of MHC variation have been explored in a variety of vertebrates, non-avian reptiles (most notably snakes) have received less attention. To address this gap and take the first steps toward more extensive population-level analyses, we cloned and sequenced MHC IIB exon 2 in an endangered rattlesnake, the Eastern Massasauga (Sistrurus catenatus). Based on three individuals, we found evidence of at least four putatively functional loci. These sequences exhibited relatively high levels of variation and significantly higher rates of nonsynonymous to synonymous substitutions, especially within the antigen-binding sites, indicating strong positive selection. Phylogenetic analysis revealed a pattern of trans-species polymorphism, also suggesting positive selection. These results contribute to our understanding of MHC variation in non-avian reptiles and form a basis for more studies of MHC variation in snakes of conservation concern
Probing sunspots with two-skip time-distance helioseismology
Previous helioseismology of sunspots has been sensitive to both the
structural and magnetic aspects of sunspot structure. We aim to develop a
technique that is insensitive to the magnetic component so the two aspects can
be more readily separated. We study waves reflected almost vertically from the
underside of a sunspot. Time-distance helioseismology was used to measure
travel times for the waves. Ray theory and a detailed sunspot model were used
to calculate travel times for comparison. It is shown that these large distance
waves are insensitive to the magnetic field in the sunspot. The largest travel
time differences for any solar phenomena are observed. With sufficient modeling
effort, these should lead to better understanding of sunspot structure
Comparison of H alpha synoptic charts with the large-scale solar magnetic field as observed at Stanford
Two methods of observing the neutral line of the large-scale photospheric magnetic field are compared: (1) neutral line positions inferred from H alpha photographs and (2) observations of the photospheric magnetic field made with low spatial resolution (3 arc min.) and high sensitivity using the Stanford magnetograph. The comparison is found to be very favorable
Solar meridional circulation from twenty-one years of SOHO/MDI and SDO/HMI observations: Helioseismic travel times and forward modeling in the ray approximation
The south-north travel-time differences are measured by applying
time-distance helioseismology to the MDI and HMI medium-degree Dopplergrams
covering May 1996-April 2017. Our data analysis corrects for several sources of
systematic effects: P-angle error, surface magnetic field effects, and
center-to-limb variations. An interpretation of the travel-time measurements is
obtained using a forward-modeling approach in the ray approximation. The
travel-time differences are similar in the southern hemisphere for cycles 23
and 24. However, they differ in the northern hemisphere between cycles 23 and
24. Except for cycle 24's northern hemisphere, the measurements favor a
single-cell meridional circulation model where the poleward flows persist down
to 0.8 , accompanied by local inflows toward the activity belts
in the near-surface layers. Cycle 24's northern hemisphere is anomalous:
travel-time differences are significantly smaller when travel distances are
greater than 20. This asymmetry between northern and southern
hemispheres during cycle 24 was not present in previous measurements (e.g.,
Rajaguru & Antia 2015), which assumed a different P-angle error correction
where south-north travel-time differences are shifted to zero at the equator
for all travel distances. In our measurements, the travel-time differences at
the equator are zero for travel distances less than 30, but they
do not vanish for larger travel distances. This equatorial offset for large
travel distances need not be interpreted as a deep cross-equator flow; it could
be due to the presence of asymmetrical local flows at the surface near the end
points of the acoustic ray paths.Comment: accepted for publication in A&
Greater Forearm Blood Flow is Associated With Higher Physical Activity in Older Individuals
Please refer to the pdf version of the abstract located adjacent to the title
The mean magnetic field of the sun: Observations at Stanford
A solar telescope was built at Stanford University to study the organization and evolution of large-scale solar magnetic fields and velocities. The observations are made using a Babcock-type magnetograph which is connected to a 22.9 m vertical Littrow spectrograph. Sun-as-a-star integrated light measurements of the mean solar magnetic field were made daily since May 1975. The typical mean field magnitude is about 0.15 gauss with typical measurement error less than 0.05 gauss. The mean field polarity pattern is essentially identical to the interplanetary magnetic field sector structure (seen near the earth with a 4 day lag). The differences in the observed structures can be understood in terms of a warped current sheet model
Impact of Locally Suppressed Wave sources on helioseismic travel times
Wave travel-time shifts in the vicinity of sunspots are typically interpreted
as arising predominantly from magnetic fields, flows, and local changes in
sound speed. We show here that the suppression of granulation related wave
sources in a sunspot can also contribute significantly to these travel-time
shifts, and in some cases, an asymmetry between in and outgoing wave travel
times. The tight connection between the physical interpretation of travel times
and source-distribution homogeneity is confirmed. Statistically significant
travel-time shifts are recovered upon numerically simulating wave propagation
in the presence of a localized decrease in source strength. We also demonstrate
that these time shifts are relatively sensitive to the modal damping rates;
thus we are only able to place bounds on the magnitude of this effect. We see a
systematic reduction of 10-15 seconds in -mode mean travel times at short
distances ( Mm) that could be misinterpreted as arising from a
shallow (thickness of 1.5 Mm) increase ( 4%) in the sound speed. At
larger travel distances ( Mm) a 6-13 s difference between the ingoing
and outgoing wave travel times is observed; this could mistakenly be
interpreted as being caused by flows.Comment: Revised version. Submitted to Ap
- …