409 research outputs found

    The conserved RNA-binding protein Seb1 promotes cotranscriptional ribosomal RNA processing by controlling RNA polymerase I progression

    Get PDF
    Transcription by RNA polymerase I (RNAPI) represents most of the transcriptional activity in eukaryotic cells and is associated with the production of mature ribosomal RNA (rRNA). As several rRNA maturation steps are coupled to RNAPI transcription, the rate of RNAPI elongation directly influences processing of nascent pre-rRNA, and changes in RNAPI transcription rate can result in alternative rRNA processing pathways in response to growth conditions and stress. However, factors and mechanisms that control RNAPI progression by influencing transcription elongation rate remain poorly understood. We show here that the conserved fission yeast RNA-binding protein Seb1 associates with the RNAPI transcription machinery and promotes RNAPI pausing states along the rDNA. The overall faster progression of RNAPI at the rDNA in Seb1-deficient cells impaired cotranscriptional pre-rRNA processing and the production of mature rRNAs. Given that Seb1 also influences pre-mRNA processing by modulating RNAPII progression, our findings unveil Seb1 as a pause-promoting factor for RNA polymerases I and II to control cotranscriptional RNA processing

    Identification of differentially expressed genes in chickens differing in muscle glycogen content and meat quality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The processing ability of poultry meat is highly related to its ultimate pH, the latter being mainly determined by the amount of glycogen in the muscle at death. The genetic determinism of glycogen and related meat quality traits has been established in the chicken but the molecular mechanisms involved in variations in these traits remain to be fully described. In this study, Chicken Genome Arrays (20 K) were used to compare muscle gene expression profiles of chickens from Fat (F) and Lean (L) lines that exhibited high and low muscle glycogen content, respectively, and of individuals exhibiting extremely high (G+) or low (G-) muscle glycogen content originating from the F<sub>2 </sub>cross between the Fat and Lean lines. Real-time RT-PCR was subsequently performed to validate the differential expression of genes either selected from the microarray analysis or whose function in regulating glycogen metabolism was well known.</p> <p>Results</p> <p>Among the genes found to be expressed in chicken P. major muscle, 197 and 254 transcripts appeared to be differentially expressed on microarrays for the F vs. L and the G+ vs. G- comparisons, respectively. Some involved particularly in lipid and carbohydrate metabolism were selected for further validation studies by real-time RT-PCR. We confirmed that, as in mammals, the down-regulation of CEBPB and RGS2 coincides with a decrease in peripheral adiposity in the chicken, but these genes are also suggested to affect muscle glycogen turnover through their role in the cAMP-dependent signalling pathway. Several other genes were suggested to have roles in the regulation of glycogen storage in chicken muscle. PDK4 may act as a glycogen sensor in muscle, UGDH may compete for glycogen synthesis by using UDP-glucose for glucoronidation, and PRKAB1, PRKAG2, and PHKD may impact on glycogen turnover in muscle, through AMP-activated signalling pathways.</p> <p>Conclusions</p> <p>This study is the first stage in the understanding of molecular mechanisms underlying variations in poultry meat quality. Large scale analyses are now required to validate the role of the genes identified and ultimately to find molecular markers that can be used for selection or to optimize rearing practices.</p

    A maximum likelihood QTL analysis reveals common genome regions controlling resistance to Salmonella colonization and carrier-state

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The serovars Enteritidis and Typhimurium of the Gram-negative bacterium <it>Salmonella enterica</it> are significant causes of human food poisoning. Fowl carrying these bacteria often show no clinical disease, with detection only established post-mortem. Increased resistance to the carrier state in commercial poultry could be a way to improve food safety by reducing the spread of these bacteria in poultry flocks. Previous studies identified QTLs for both resistance to carrier state and resistance to <it>Salmonella</it> colonization in the same White Leghorn inbred lines. Until now, none of the QTLs identified was common to the two types of resistance. All these analyses were performed using the F2 inbred or backcross option of the QTLExpress software based on linear regression. In the present study, QTL analysis was achieved using Maximum Likelihood with QTLMap software, in order to test the effect of the QTL analysis method on QTL detection. We analyzed the same phenotypic and genotypic data as those used in previous studies, which were collected on 378 animals genotyped with 480 genome-wide SNP markers. To enrich these data, we added eleven SNP markers located within QTLs controlling resistance to colonization and we looked for potential candidate genes co-localizing with QTLs.</p> <p>Results</p> <p>In our case the QTL analysis method had an important impact on QTL detection. We were able to identify new genomic regions controlling resistance to carrier-state, in particular by testing the existence of two segregating QTLs. But some of the previously identified QTLs were not confirmed. Interestingly, two QTLs were detected on chromosomes 2 and 3, close to the locations of the major QTLs controlling resistance to colonization and to candidate genes involved in the immune response identified in other, independent studies.</p> <p>Conclusions</p> <p>Due to the lack of stability of the QTLs detected, we suggest that interesting regions for further studies are those that were identified in several independent studies, which is the case of the QTL regions on chromosomes 2 and 3, involved in resistance to both <it>Salmonella</it> colonization and carrier state. These observations provide evidence of common genes controlling <it>S.</it> Typhimurium colonization and <it>S</it>. Enteritidis carrier-state in chickens.</p

    Improving the efficiency of feed utilization in poultry by selection. 1. Genetic parameters of anatomy of the gastro-intestinal tract and digestive efficiency

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Feed costs represent about 70% of the costs of raising broilers. The main way to decrease these costs is to improve feed efficiency by modification of diet formulation, but one other possibility would be to use genetic selection. Understanding the genetic architecture of the gastro-intestinal tract (GIT) and the impact of the selection criterion on the GIT would be of particular interest. We therefore studied the genetic parameters of AMEn (Apparent metabolisable energy corrected for zero nitrogen balance), feed efficiency, and GIT traits in chickens.</p> <p>Genetic parameters were estimated for 630 broiler chickens of the eighth generation of a divergent selection experiment on AMEn. Birds were reared until 23 d of age and fed a wheat-based diet. The traits measured were body weight (BW), feed conversion ratio (FCR), AMEn, weights of crop, liver, gizzard and proventriculus, and weight, length and density of the duodenum, jejunum and ileum.</p> <p>Results</p> <p>The heritability estimates of BW, FCR and AMEn were moderate. The heritability estimates were higher for the GIT characteristics except for the weights of the proventriculus and liver. Gizzard weight was negatively correlated with density (weight to length ratio) of duodenum, jejunum and ileum. Proventriculus and gizzard weights were more strongly correlated with AMEn than with FCR, which was not the case for intestine weight and density.</p> <p>Conclusions</p> <p>GIT traits were largely dependent on genetics and that selecting on AMEn or FCR would modify them. Phenotypic observations carried out in the divergent lines selected on AMEn were consistent with estimated genetic correlations between AMEn and GIT traits.</p

    Improving the efficiency of feed utilization in poultry by selection. 2. Genetic parameters of excretion traits and correlations with anatomy of the gastro-intestinal tract and digestive efficiency

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Poultry production has been widely criticized for its negative environmental impact related to the quantity of manure produced and to its nitrogen and phosphorus content. In this study, we investigated which traits related to excretion could be used to select chickens for lower environmental pollution.</p> <p>The genetic parameters of several excretion traits were estimated on 630 chickens originating from 2 chicken lines divergently selected on apparent metabolisable energy corrected for zero nitrogen (AMEn) at constant body weight. The quantity of excreta relative to feed consumption (CDUDM), the nitrogen and phosphorus excreted, the nitrogen to phosphorus ratio and the water content of excreta were measured, and the consequences of such selection on performance and gastro-intestinal tract (GIT) characteristics estimated. The genetic correlations between excretion, GIT and performance traits were established.</p> <p>Results</p> <p>Heritability estimates were high for CDUDM and the nitrogen excretion rate (0.30 and 0.29, respectively). The other excretion measurements showed low to moderate heritability estimates, ranging from 0.10 for excreta water content to 0.22 for the phosphorus excretion rate. Except for the excreta water content, the CDUDM was highly correlated with the excretion traits, ranging from -0.64 to -1.00. The genetic correlations between AMEn or CDUDM and the GIT characteristics were very similar and showed that a decrease in chicken excretion involves an increase in weight of the upper part of the GIT, and a decrease in the weight of the small intestine.</p> <p>Conclusion</p> <p>In order to limit the environmental impact of chicken production, AMEn and CDUDM seem to be more suitable criteria to include in selection schemes than feed efficiency traits.</p

    Deprotometalation-iodolysis and computed CH acidity of 1,2,3- and 1,2,4-triazoles. Application to the synthesis of resveratrol analogues

    No full text
    International audience1-Aryl- and 2-aryl-1,2,3-triazoles were synthesized by N-arylation of the corresponding azoles using aryl iodides. The deprotometalations of 1-phenyl-1,2,3-triazole and -1,2,4-triazole were performed using a 2,2,6,6-tetramethylpiperidino-based mixed lithium-zinc combination and occurred at the most acidic site, affording by iodolysis the 5-substituted derivatives. Dideprotonation was noted from 1-(2-thienyl)-1,2,4-triazole by increasing the amount of base. From 2-phenyl-1,2,3-triazoles, and in particular from 2-(4-trifluoromethoxy)phenyl-1,2,3-triazole, reactions at the 4 position of the triazolyl, but also ortho to the triazolyl on the phenyl group, were observed. The results were analyzed with the help of the CH acidities of the substrates, determined in THF solution using the DFT B3LYP method. 4-Iodo-2-phenyl-1,2,3-triazole and 4-iodo-2-(2-iodophenyl)-1,2,3-triazole were next involved in Suzuki coupling reactions to furnish the corresponding 4-arylated and 4,2’-diarylated derivatives. When evaluated for biological activities, the latter (which are resveratrol analogues) showed moderate antibacterial activity and promising antiproliferative effect against MDA-MB-231 cell line

    Mapping main, epistatic and sex-specific QTL for body composition in a chicken population divergently selected for low or high growth rate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Delineating the genetic basis of body composition is important to agriculture and medicine. In addition, the incorporation of gene-gene interactions in the statistical model provides further insight into the genetic factors that underlie body composition traits. We used Bayesian model selection to comprehensively map main, epistatic and sex-specific QTL in an F<sub>2 </sub>reciprocal intercross between two chicken lines divergently selected for high or low growth rate.</p> <p>Results</p> <p>We identified 17 QTL with main effects across 13 chromosomes and several sex-specific and sex-antagonistic QTL for breast meat yield, thigh + drumstick yield and abdominal fatness. Different sets of QTL were found for both breast muscles [<it>Pectoralis (P) major </it>and <it>P. minor</it>], which suggests that they could be controlled by different regulatory mechanisms. Significant interactions of QTL by sex allowed detection of sex-specific and sex-antagonistic QTL for body composition and abdominal fat. We found several female-specific <it>P. major </it>QTL and sex-antagonistic <it>P. minor </it>and abdominal fatness QTL. Also, several QTL on different chromosomes interact with each other to affect body composition and abdominal fatness.</p> <p>Conclusions</p> <p>The detection of main effects, epistasis and sex-dimorphic QTL suggest complex genetic regulation of somatic growth. An understanding of such regulatory mechanisms is key to mapping specific genes that underlie QTL controlling somatic growth in an avian model.</p

    Transcriptional profiling and pathway analysis reveal differences in pituitary gland function, morphology, and vascularization in chickens genetically selected for high or low body weight

    Get PDF
    Though intensive genetic selection has led to extraordinary advances in growth rate and feed efficiency in production of meat-type chickens, endocrine processes controlling these traits are still poorly understood. The anterior pituitary gland is a central component of the neuroendocrine system and plays a key role in regulating important physiological processes that directly impact broiler production efficiency, though how differences in pituitary gland function contribute to various growth and body composition phenotypes is not fully understood.https://doi.org/10.1186/s12864-019-5670-

    Transcriptional analysis of abdominal fat in genetically fat and lean chickens reveals adipokines, lipogenic genes and a link between hemostasis and leanness

    Get PDF
    This descriptive study of the abdominal fat transcriptome takes advantage of two experimental lines of meat-type chickens (Gallus domesticus), which were selected over seven generations for a large difference in abdominal (visceral) fatness. At the age of selection (9 wk), the fat line (FL) and lean line (LL) chickens exhibit a 2.5-fold difference in abdominal fat weight, while their feed intake and body weight are similar. These unique avian models were originally created to unravel genetic and endocrine regulation of adiposity and lipogenesis in meat-type chickens. The Del-Mar 14K Chicken Integrated Systems microarray was used for a time-course analysis of gene expression in abdominal fat of FL and LL chickens during juvenile development (1–11 weeks of age). Microarray analysis of abdominal fat in FL and LL chickens revealed 131 differentially expressed (DE) genes (FDR≤0.05) as the main effect of genotype, 254 DE genes as an interaction of age and genotype and 3,195 DE genes (FDR≤0.01) as the main effect of age. The most notable discoveries in the abdominal fat transcriptome were higher expression of many genes involved in blood coagulation in the LL and up-regulation of numerous adipogenic and lipogenic genes in FL chickens. Many of these DE genes belong to pathways controlling the synthesis, metabolism and transport of lipids or endocrine signaling pathways activated by adipokines, retinoid and thyroid hormones. The present study provides a dynamic view of differential gene transcription in abdominal fat of chickens genetically selected for fatness (FL) or leanness (LL). Remarkably, the LL chickens over-express a large number of hemostatic genes that could be involved in proteolytic processing of adipokines and endocrine factors, which contribute to their higher lipolysis and export of stored lipids. Some of these changes are already present at 1 week of age before the divergence in fatness. In contrast, the FL chickens have enhanced expression of numerous lipogenic genes mainly after onset of divergence, presumably directed by multiple transcription factors. This transcriptional analysis shows that abdominal fat of the chicken serves a dual function as both an endocrine organ and an active metabolic tissue, which could play a more significant role in lipogenesis than previously thought.https://doi.org/10.1186/1471-2164-14-55

    the ESC-EORP EURO-ENDO registry

    Get PDF
    Funding: The study has received funding from Abbott Vascular Int. (2011–2021), Amgen Cardiovascular (2009–2018), AstraZeneca (2014–2021), Bayer AG (2009–2018), Boehringer Ingelheim (2009–2019), Boston Scientific (2009–2012), The Bristol Myers Squibb and Pfizer Alliance (2011– 2019), Daiichi Sankyo Europe GmbH (2011–2020), The Alliance Daiichi Sankyo Europe GmbH and Eli Lilly and Company (2014–2017), Edwards (2016–2019), Gedeon Richter Plc. (2014–2016), Menarini Int. Op. (2009–2012), MSD-Merck & Co. (2011–2014), Novartis Pharma AG (2014–2020), ResMed (2014–2016), Sanofi (2009–2011), SERVIER (2009–2021), and Vifor (2019–2022)AIM: Fatality of infective endocarditis (IE) is high worldwide, and its diagnosis remains a challenge. The objective of the present study was to compare the clinical characteristics and outcomes of patients with culture-positive (CPIE) vs. culture-negative IE (CNIE). METHODS AND RESULTS: This was an ancillary analysis of the ESC-EORP EURO-ENDO registry. Overall, 3113 patients who were diagnosed with IE during the study period were included in the present study. Of these, 2590 (83.2%) had CPIE, whereas 523 (16.8%) had CNIE. As many as 1488 (48.1%) patients underwent cardiac surgery during the index hospitalization, 1259 (48.8%) with CPIE and 229 (44.5%) with CNIE. The CNIE was a predictor of 1-year mortality [hazard ratio (HR) 1.28, 95% confidence interval (CI) 1.04-1.56], whereas surgery was significantly associated with survival (HR 0.49, 95% CI 0.41-0.58). The 1-year mortality was significantly higher in CNIE than CPIE patients in the medical subgroup, but it was not significantly different in CNIE vs. CPIE patients who underwent surgery. CONCLUSION: The present analysis of the EURO-ENDO registry confirms a higher long-term mortality in patients with CNIE compared with patients with CPIE. This difference was present in patients receiving medical therapy alone and not in those who underwent surgery, with surgery being associated with reduced mortality. Additional efforts are required both to improve the aetiological diagnosis of IE and identify CNIE cases early before progressive disease potentially contraindicates surgery.publishersversionpublishe
    corecore