13 research outputs found
Rapid biolayer interferometry measurements of urinary CXCL9 to detect cellular infiltrates noninvasively after kidney transplantation
Introduction: measuring the chemokine CXCL9 in urine by enzyme-linked immunosorbent assay (ELISA) can diagnose acute cellular rejection (ACR) noninvasively after kidney transplantation, but the required 12- to 24-hour turnaround time is not ideal for rapid, clinical decision-making. Methods: we developed a biolayer interferometry (BLI)−based assay to rapidly measure urinary CXCL9 in 200 pg/ml in subjects with ACR and ≤100 pg/ml in subjects with stable kidney function without cellular infiltrates. In samples obtained after treatment for ACR, BLI CXCL9 measurements detected biopsy-proven intragraft infiltrates despite treatment-induced reduction in serum creatinine. Discussion: together, our proof-of-principle results demonstrate that BLI-based urinary CXCL9 detection has potential as a point-of-care noninvasive biomarker to diagnose and guide therapy for ACR in kidney transplantation recipients
Quantifying Absolute Neutralization Titers against SARS-CoV-2 by a Standardized Virus Neutralization Assay Allows for CrossCohort Comparisons of COVID-19 Sera
The global coronavirus disease 2019 (COVID-19) pandemic has mobilized efforts to develop vaccines and antibody-based therapeutics, including convalescent-phase plasma therapy, that inhibit viral entry by inducing or transferring neutralizing antibodies (nAbs) against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (CoV2-S). However, rigorous efficacy testing requires extensive screening with live virus under onerous biosafety level 3 (BSL3) conditions, which limits high-throughput screening of patient and vaccine sera. Myriad BSL2-compatible surrogate virus neutralization assays (VNAs) have been developed to overcome this barrier. Yet, there is marked variability between VNAs and how their results are presented, making intergroup comparisons difficult. To address these limitations, we developed a standardized VNA using CoV2-S pseudotyped particles (CoV2pp) based on vesicular stomatitis virus bearing the Renilla luciferase gene in place of its G glyco-protein (VSVDG); this assay can be robustly produced at scale and generate accurate neutralizing titers within 18 h postinfection. Our standardized CoV2pp VNA showed a strong positive correlation with CoV2-S enzyme-linked immunosorbent assay (ELISA) results and live-virus neutralizations in confirmed convalescent-patient sera. Three independent groups subsequently validated our standardized CoV2pp VNA (n . 120). Our data (i) show that absolute 50% inhibitory concentration (absIC50), absIC80, and absIC90 values can be legitimately compared across diverse cohorts, (ii) highlight the substantial but consistent variability in neutralization potency across these cohorts, and (iii) support the use of the absIC80 as a more meaningful metric for assessing the neutralization potency of a vaccine or convalescent-phase sera. Lastly, we used our CoV2pp in a screen to identify ultrapermissive 293T clones that stably express ACE2 or ACE2 plus TMPRSS2. When these are used in combination with our CoV2pp, we can produce CoV2pp sufficient for 150,000 standardized VNAs/week. IMPORTANCE Vaccines and antibody-based therapeutics like convalescent-phase plasma therapy are premised upon inducing or transferring neutralizing antibodies that inhibit SARS-CoV-2 entry into cells. Virus neutralization assays (VNAs) for measuring neutralizing antibody titers (NATs) are an essential part of determining vaccine or therapeutic efficacy. However, such efficacy testing is limited by the inherent dangers of working with the live virus, which requires specialized high-level biocontainment facilities. We there-fore developed a standardized replication-defective pseudotyped particle system that mimics the entry of live SARS-CoV-2. This tool allows for the safe and efficient measurement of NATs, determination of other forms of entry inhibition, and thorough investigation of virus entry mechanisms. Four independent labs across the globe validated our standardized VNA using diverse cohorts. We argue that a standardized and scalable assay is necessary for meaningful comparisons of the myriad of vaccines and antibody-based therapeutics becoming available. Our data provide generalizable metrics for assessing their efficacy.Fil: Oguntuyo, Kasopefoluwa. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Stevens, Christian S.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Hung, Chuan Tien. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Ikegame, Satoshi. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Acklin, Joshua A.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Kowdle, Shreyas S.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Carmichael, Jillian C.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Chiu, Hsin Ping. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Azarm, Kristopher D.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Haas, Griffin D.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Amanat, Fatima. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Klingler, Jéromine. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Baine, Ian. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Arinsburg, Suzanne. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Bandres, Juan C.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Siddiquey, Mohammed N. A.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Schilke, Robert M.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Woolard, Matthew D.. State University of Louisiana; Estados UnidosFil: Zhang, Hongbo. State University of Louisiana; Estados UnidosFil: Duty, Andrew J.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Kraus, Thomas A.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Moran, Thomas M.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Tortorella, Domenico. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Lim, Jean K.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Gamarnik, Andrea Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Hioe, Catarina E.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Zolla Pazner, Susan. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Ivanov, Stanimir S.. State University of Louisiana; Estados UnidosFil: Kamil, Jeremy. State University of Louisiana; Estados UnidosFil: Krammer, Florian. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Lee, Benhur. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Ojeda, Diego Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: González López Ledesma, María Mora. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Costa Navarro, Guadalupe Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Pallarés, H. M.. No especifíca;Fil: Sanchez, Lautaro Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Perez, P.. No especifíca;Fil: Ostrowsk, M.. No especifíca;Fil: Villordo, S. M.. No especifíca;Fil: Alvarez, D. E.. No especifíca;Fil: Caramelo, J. J.. No especifíca;Fil: Carradori, J.. No especifíca;Fil: Yanovsky, M. J.. No especifíca
Rapid Biolayer Interferometry Measurements of Urinary CXCL9 to Detect Cellular Infiltrates Noninvasively After Kidney Transplantation
Introduction Measuring the chemokine CXCL9 in urine by enzyme-linked immunosorbent assay (ELISA) can diagnose acute cellular rejection (ACR) noninvasively after kidney transplantation, but the required 12- to 24-hour turnaround time is not ideal for rapid, clinical decision-making. Methods We developed a biolayer interferometry (BLI)−based assay to rapidly measure urinary CXCL9 in 200 pg/ml in subjects with ACR and ≤100 pg/ml in subjects with stable kidney function without cellular infiltrates. In samples obtained after treatment for ACR, BLI CXCL9 measurements detected biopsy-proven intragraft infiltrates despite treatment-induced reduction in serum creatinine. Discussion Together, our proof-of-principle results demonstrate that BLI-based urinary CXCL9 detection has potential as a point-of-care noninvasive biomarker to diagnose and guide therapy for ACR in kidney transplantation recipients
Rapid biolayer interferometry measurements of urinary CXCL9 to detect cellular infiltrates noninvasively after kidney transplantation
Introduction: measuring the chemokine CXCL9 in urine by enzyme-linked immunosorbent assay (ELISA) can diagnose acute cellular rejection (ACR) noninvasively after kidney transplantation, but the required 12- to 24-hour turnaround time is not ideal for rapid, clinical decision-making. Methods: we developed a biolayer interferometry (BLI)−based assay to rapidly measure urinary CXCL9 in 200 pg/ml in subjects with ACR and ≤100 pg/ml in subjects with stable kidney function without cellular infiltrates. In samples obtained after treatment for ACR, BLI CXCL9 measurements detected biopsy-proven intragraft infiltrates despite treatment-induced reduction in serum creatinine. Discussion: together, our proof-of-principle results demonstrate that BLI-based urinary CXCL9 detection has potential as a point-of-care noninvasive biomarker to diagnose and guide therapy for ACR in kidney transplantation recipients
Rapid biolayer interferometry measurements of urinary CXCL9 to detect cellular infiltrates noninvasively after kidney transplantation
Introduction: measuring the chemokine CXCL9 in urine by enzyme-linked immunosorbent assay (ELISA) can diagnose acute cellular rejection (ACR) noninvasively after kidney transplantation, but the required 12- to 24-hour turnaround time is not ideal for rapid, clinical decision-making. Methods: we developed a biolayer interferometry (BLI)−based assay to rapidly measure urinary CXCL9 in 200 pg/ml in subjects with ACR and ≤100 pg/ml in subjects with stable kidney function without cellular infiltrates. In samples obtained after treatment for ACR, BLI CXCL9 measurements detected biopsy-proven intragraft infiltrates despite treatment-induced reduction in serum creatinine. Discussion: together, our proof-of-principle results demonstrate that BLI-based urinary CXCL9 detection has potential as a point-of-care noninvasive biomarker to diagnose and guide therapy for ACR in kidney transplantation recipients
Mature B cells class switched to IgD are autoreactive in healthy individuals
Determination of the origin and fate of autoreactive B cells is critical to understanding and treating autoimmune diseases. We report that, despite being derived from healthy people, antibodies from B cells that have class switched to IgD via genetic recombination (and thus become class switched to Cδ [Cδ-CS] cells) are highly reactive to self antigens. Over half of the antibodies from Cδ-CS B cells bind autoantigens on human epithelioma cell line 2 (HEp-2) cells or antinuclear antigens, and a quarter bind double-stranded DNA; both groups of antibodies are frequently polyreactive. Intriguingly, some Cδ-CS B cells have accumulated basic residues in the antibody variable regions that mediate anti-DNA reactivity via somatic hypermutation and selection, while other Cδ-CS B cells are naturally autoreactive. Though the total percentage was appreciably less than for Cδ-CS cells, a surprising 31% of IgG memory cell antibodies were somewhat autoreactive, and as expected, about 24% of naive cell antibodies were autoreactive. We interpret these findings to indicate either that autoreactive B cells can be induced to class switch to IgD or that autoreactive B cells that use IgD as the B cell receptor are not effectively deleted. Determination of the mechanism by which the majority of Cδ-CS B cells are autoreactive may be important in understanding peripheral tolerance mechanisms and may provide insight into the enigmatic function of the IgD antibody