84 research outputs found

    Exact Diagonalization of Two Quantum Models for the Damped Harmonic Oscillator

    Full text link
    The damped harmonic oscillator is a workhorse for the study of dissipation in quantum mechanics. However, despite its simplicity, this system has given rise to some approximations whose validity and relation to more refined descriptions deserve a thorough investigation. In this work, we apply a method that allows us to diagonalize exactly the dissipative Hamiltonians that are frequently adopted in the literature. Using this method we derive the conditions of validity of the rotating-wave approximation (RWA) and show how this approximate description relates to more general ones. We also show that the existence of dissipative coherent states is intimately related to the RWA. Finally, through the evaluation of the dynamics of the damped oscillator, we notice an important property of the dissipative model that has not been properly accounted for in previous works; namely, the necessity of new constraints to the application of the factorizable initial conditions.Comment: 19 pages, 2 figures, ReVTe

    Field quantization for open optical cavities

    Get PDF
    We study the quantum properties of the electromagnetic field in optical cavities coupled to an arbitrary number of escape channels. We consider both inhomogeneous dielectric resonators with a scalar dielectric constant ϵ(r)\epsilon({\bf r}) and cavities defined by mirrors of arbitrary shape. Using the Feshbach projector technique we quantize the field in terms of a set of resonator and bath modes. We rigorously show that the field Hamiltonian reduces to the system--and--bath Hamiltonian of quantum optics. The field dynamics is investigated using the input--output theory of Gardiner and Collet. In the case of strong coupling to the external radiation field we find spectrally overlapping resonator modes. The mode dynamics is coupled due to the damping and noise inflicted by the external field. For wave chaotic resonators the mode dynamics is determined by a non--Hermitean random matrix. Upon including an amplifying medium, our dynamics of open-resonator modes may serve as a starting point for a quantum theory of random lasing.Comment: 16 pages, added references, corrected typo

    Route towards the ideal thresholdless laser

    Get PDF
    Quantum Matter and Optic

    Generation of Entangled N-Photon States in a Two-Mode Jaynes-Cummings Model

    Full text link
    We describe a mathematical solution for the generation of entangled N-photon states in two field modes. A simple and compact solution is presented for a two-mode Jaynes-Cummings model by combining the two field modes in a way that only one of the two resulting quasi-modes enters in the interaction term. The formalism developed is then applied to calculate various generation probabilities analytically. We show that entanglement, starting from an initial field and an atom in one defined state may be obtained in a single step. We also show that entanglement may be built up in the case of an empty cavity and excited atoms whose final states are detected, as well as in the case when the final states of the initially excited atoms are not detected.Comment: v2: 5 pages, RevTeX4, minor text changes + 1 figure added, revised version to be published in PRA, May 200

    A master equation for a two-sided optical cavity.

    Get PDF
    Quantum optical systems, like trapped ions, are routinely described by master equations. The purpose of this paper is to introduce a master equation for two-sided optical cavities with spontaneous photon emission. To do so, we use the same notion of photons as in linear optics scattering theory and consider a continuum of travelling-wave cavity photon modes. Our model predicts the same stationary state photon emission rates for the different sides of a laser-driven optical cavity as classical theories. Moreover, it predicts the same time evolution of the total cavity photon number as the standard standing-wave description in experiments with resonant and near-resonant laser driving. The proposed resonator Hamiltonian can be used, for example, to analyse coherent cavity-fiber networks [E. Kyoseva et al., New J. Phys. 14, 023023 (2012

    Approximate Solution of the effective mass Klein-Gordon Equation for the Hulthen Potential with any Angular Momentum

    Full text link
    The radial part of the effective mass Klein-Gordon equation for the Hulthen potential is solved by making an approximation to the centrifugal potential. The Nikiforov-Uvarov method is used in the calculations. Energy spectra and the corresponding eigenfunctions are computed. Results are also given for the case of constant mass.Comment: 12 page

    Avaliação da resposta do Plasmodium falciparum à cloroquina, quinino e mefloquina

    Get PDF
    The present study is concerned with the analysis of Plasmodium falciparum strains from the Brazilian Amazon Region, collected at the Malaria Laboratory - SUCENT. "In vitro" sensitivity tests were performed using chloroquine (46 samples), quinine (42 samples) and mefloquine (51 samples). Results have shown "in vitro" resistance to chloroquine in 100% of the tested samples, to quinine in 2.4% and to mefloquine in 3L4%. Seven patients were treated with quinine and nine with the triple combination (mefloquine plus sulfadoxine plus pyrimethamine). No correlation was shown between the therapeutic response and the "in vitro" tests.Nosso estudo envolveu a análise de cepas de Plasmodium falciparum provenientes da Região Amazônica Brasileira, coletadas no Laboratório de Malária da SUCEN. Os estudos "in vitro" foram efetuados com a cloroquina (46 ensaios), quinino (42 ensaios) e mefloquina (51 ensaios). Os resultados mostraram resistência de 100% em relação à cloroquina, 2,4% ao quinino e 31,4% à mefloquina, na análise "in vitro". Sete pacientes foram tratados com quinino isolado e nove com a associação mefloquina + pirimetamina-sulfadoxina, não mostrando correlação com os testes "in vitro"

    Maxwell-Bloch approach to excess quantum noise

    Get PDF
    Quantum Matter and Optic

    On the equivalence of the Langevin and auxiliary field quantization methods for absorbing dielectrics

    Get PDF
    Recently two methods have been developed for the quantization of the electromagnetic field in general dispersing and absorbing linear dielectrics. The first is based upon the introduction of a quantum Langevin current in Maxwell's equations [T. Gruner and D.-G. Welsch, Phys. Rev. A 53, 1818 (1996); Ho Trung Dung, L. Kn\"{o}ll, and D.-G. Welsch, Phys. Rev. A 57, 3931 (1998); S. Scheel, L. Kn\"{o}ll, and D.-G. Welsch, Phys. Rev. A 58, 700 (1998)], whereas the second makes use of a set of auxiliary fields, followed by a canonical quantization procedure [A. Tip, Phys. Rev. A 57, 4818 (1998)]. We show that both approaches are equivalent.Comment: 7 pages, RevTeX, no figure
    corecore