17 research outputs found

    Alternatively spliced tissue factor is not sufficient for embryonic development

    Get PDF
    Tissue factor (TF) triggers blood coagulation and is translated from two mRNA splice isoforms, encoding membrane-anchored full-length TF (flTF) and soluble alternatively-spliced TF (asTF). The complete knockout of TF in mice causes embryonic lethality associated with failure of the yolk sac vasculature. Although asTF plays roles in postnatal angiogenesis, it is unknown whether it activates coagulation sufficiently or makes previously unrecognized contributions to sustaining integrity of embryonic yolk sac vessels. Using gene knock-in into the mouse TF locus, homozygous asTF knock-in (asTFKI) mice, which express murine asTF in the absence of flTF, exhibited embryonic lethality between day 9.5 and 10.5. Day 9.5 homozygous asTFKI embryos expressed asTF protein, but no procoagulant activity was detectable in a plasma clotting assay. Although the α-smooth-muscle-actin positive mesodermal layer as well as blood islands developed similarly in day 8.5 wild-type or homozygous asTFKI embryos, erythrocytes were progressively lost from disintegrating yolk sac vessels of asTFKI embryos by day 10.5. These data show that in the absence of flTF, asTF expressed during embryonic development has no measurable procoagulant activity, does not support embryonic vessel stability by non-coagulant mechanisms, and fails to maintain a functional vasculature and embryonic survival

    Targeting of the TF gene.

    No full text
    <p>The murine TF allele was targeted with a replacement-type vector containing the murine asTF open reading frame flanked by 3 kb 5′ and 5.2 kb 3′ homology arms. Diphtheria toxin (dt) was used for negative selection. After homologous recombination into 129P2/OlaHsd embryonic stem cells, a loxP flanked neomycin resistance cassette was removed by transfection with a Cre expression plasmid.</p

    Expression and activity of asTF.

    No full text
    <p>(A) RNA levels of asTF and flTF were measured in E9.5 whole embryos and normalized to S18 expression, N = 5–7, ***P<0.001, **P<0.01 (B) Protein expression of total TF (western blot probed with a rabbit anti-mouse TF polyclonal antibody), asTF (western blot probed with a rabbit anti-mouse asTF polyclonal antibody), and GAPDH in E9.5 whole embryos. Intensity of normalized total TF staining relative to wt (100%) was 74% in asTFKI/wtTF embryos and 19% in asTFKI/asTFKI embryos. Expression of asTF was comparable between homozygous asTFKI, heterozygous asTFKI/wtTF and wt embryos (C) Mouse asTF and rabbit IgG control immunohistochemistry on E9.5 homozygous asTFKI and E10.5 wt yolk sac. Mouse asTF immunohistochemistry on E8.5 to E10.5 extraembryonic (yolk sac) and embryonic (heart) tissue of homozygous asTFKI and wt embryos. (D) TF activity of whole embryo lysates was measured with a plasma clotting assay and normalized to total protein. N = 5, ***P<0.001.</p

    Genotype distribution on E9.5 and birth.

    No full text
    <p>Homozygous asTFKI embryos die after developmental day E9.5. Genotype distribution of offspring from heterozygous breeding pairs at birth (black bars) differs from that at embryonic day 9.5 (grey bars). At day 9.5, embryonic genotypes are distributed in a Mendelian manner, while no more homozygous asTFKI pups can be identified at birth (p = 0.0001, χ2-test).</p

    Yolk sac histology.

    No full text
    <p>(A) On day E8.5, Haematoxylin and Eosin (H&E) staining and α-SMA immunohistochemistry show comparable integrity, erythrocyte filling, α-SMA staining of the mesodermal layer of homozygous asTFKI and wt yolk sacs. (B) On day E9.5, erythrocyte content, wall thickness, and number of α-SMA expressing cells are reduced in homozygous asTFKI yolk sacs. AsTFKI embryos are found at different stages of growth retardation and wasting. (C) On day E10.5, depletion of erythrocytes, reduced number of α-SMA<sup>+</sup> cells, thinning and detachment of mesodermal from endodermal layer in homozygous asTFKI yolk sacs. No intact blood filled vessels can be detected anymore in homozygous asTFKI yolk sac en face preparations. (D) Quantification of erythrocyte and α-SMA<sup>+</sup> cell number in E8.5–E10.5 yolk sacs of homozygous asTFKI and wt embryos ***p<0.001, **p<0.01.</p

    Antibody-based targeting of alternatively spliced tissue factor: A new approach to impede the primary growth and spread of pancreatic ductal adenocarcinoma

    Get PDF
    Alternatively spliced Tissue Factor (asTF) is a secreted form of Tissue Factor (TF), the trigger of blood coagulation whose expression levels are heightened in several forms of solid cancer, including pancreatic ductal adenocarcinoma (PDAC). asTF binds to β1 integrins on PDAC cells, whereby it promotes tumor growth, metastatic spread, and monocyte recruitment to the stroma. In this study, we determined if targeting asTF in PDAC would significantly impact tumor progression. We here report that a novel inhibitory anti-asTF monoclonal antibody curtails experimental PDAC progression. Moreover, we show that tumor-derived asTF is able to promote PDAC primary growth and spread during early as well as later stages of the disease. This raises the likelihood that asTF may comprise a viable target in early- and late-stage PDAC. In addition, we show that TF expressed by host cells plays a significant role in PDAC spread. Together, our data demonstrate that targeting asTF in PDAC is a novel strategy to stem PDAC progression and spread
    corecore