535 research outputs found

    Chapter 11: Evidence

    Get PDF

    A Multi-Chamber System for Analyzing the Outgassing, Deposition, and Associated Optical Degradation Properties of Materials in a Vacuum

    Full text link
    We report on the Camera Materials Test Chamber, a multi-vessel apparatus which analyzes the outgassing consequences of candidate materials for use in the vacuum cryostat of a new telescope camera. The system measures the outgassing products and rates of samples of materials at different temperatures, and collects films of outgassing products to measure the effects on light transmission in six optical bands. The design of the apparatus minimizes potential measurement errors introduced by background contamination.Comment: 9 pages, 10 figures, published in RSI (minor edits made to match journal accepted version

    The effect of substrate roughness on air entrainment in dip coating

    Get PDF
    YesDynamic wetting failure was observed in the simple dip coating flow with a series of substrates, which had a rough side and a comparatively smoother side. When we compared the air entrainment speeds on both sides, we found a switch in behaviour at a critical viscosity. At viscosity lower than a critical value, the rough side entrained air at lower speeds than the smooth side. Above the critical viscosity the reverse was observed, the smooth side entraining air at lower speed than the rough side. Only substrates with significant roughness showed this behaviour. Below a critical roughness, the rough side always entrained air at lower speeds than the smooth side. These results have both fundamental and practical merits. They support the hydrodynamic theory of dynamic wetting failure and imply that one can coat viscous fluids at higher speeds than normal by roughening substrates. A mechanism and a model are presented to explain dynamic wetting failure on rough surfaces

    Magnetically filtered Faraday probe for measuring the ion current density profile of a Hall thruster

    Get PDF
    The ability of a magnetically filtered Faraday probe (MFFP) to obtain the ion current density profile of a Hall thruster is investigated. The MFFP is designed to eliminate the collection of low-energy, charge-exchange (CEX) ions by using a variable magnetic field as an ion filter. In this study, a MFFP, Faraday probe with a reduced acceptance angle (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW5kW Hall thruster operating over the range of 300–500 V300–500V and 5–10 mg/s5–10mg∕s. The probes are evaluated on a xenon propellant Hall thruster in the University of Michigan Large Vacuum Test Facility at operating pressures within the range of 4.4×10−4 Pa4.4×10−4Pa Xe (3.3×10−6 Torr3.3×10−6Torr Xe) to 1.1×10−3 Pa1.1×10−3Pa Xe (8.4×10−6 Torr8.4×10−6Torr Xe) in order to study the ability of the Faraday probe designs to filter out CEX ions. Detailed examination of the results shows that the nude probe measures a greater ion current density profile than both the MFFP and BFP over the range of angular positions investigated for each operating condition. The differences between the current density profiles obtained by each probe are attributed to the ion filtering systems employed. Analysis of the results shows that the MFFP, operating at a +5 A+5A solenoid current, provides the best agreement with flight-test data and across operating pressures.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87898/2/013503_1.pd

    Measurements of True Leak Rates of MEMS Packages

    Get PDF
    Gas transport mechanisms that characterize the hermetic behavior of MEMS packages are fundamentally different depending upon which sealing materials are used in the packages. In metallic seals, gas transport occurs through a few nanoscale leak channels (gas conduction) that are produced randomly during the solder reflow process, while gas transport in polymeric seals occurs through the bulk material (gas diffusion). In this review article, the techniques to measure true leak rates of MEMS packages with the two sealing materials are described and discussed: a Helium mass spectrometer based technique for metallic sealing and a gas diffusion based model for polymeric sealing

    Leakage analysis of the EVOLVE first wall

    Full text link

    Ion-Energy Plume Diagnostics on the BHT-600 Hall Thruster Cluster

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76547/1/AIAA-20514-735.pd

    Quasichemical Models of Multicomponent Nonlinear Diffusion

    Full text link
    Diffusion preserves the positivity of concentrations, therefore, multicomponent diffusion should be nonlinear if there exist non-diagonal terms. The vast variety of nonlinear multicomponent diffusion equations should be ordered and special tools are needed to provide the systematic construction of the nonlinear diffusion equations for multicomponent mixtures with significant interaction between components. We develop an approach to nonlinear multicomponent diffusion based on the idea of the reaction mechanism borrowed from chemical kinetics. Chemical kinetics gave rise to very seminal tools for the modeling of processes. This is the stoichiometric algebra supplemented by the simple kinetic law. The results of this invention are now applied in many areas of science, from particle physics to sociology. In our work we extend the area of applications onto nonlinear multicomponent diffusion. We demonstrate, how the mechanism based approach to multicomponent diffusion can be included into the general thermodynamic framework, and prove the corresponding dissipation inequalities. To satisfy thermodynamic restrictions, the kinetic law of an elementary process cannot have an arbitrary form. For the general kinetic law (the generalized Mass Action Law), additional conditions are proved. The cell--jump formalism gives an intuitively clear representation of the elementary transport processes and, at the same time, produces kinetic finite elements, a tool for numerical simulation.Comment: 81 pages, Bibliography 118 references, a review paper (v4: the final published version

    Analytic results for Gaussian wave packets in four model systems: I. Visualization of the kinetic energy

    Full text link
    Using Gaussian wave packet solutions, we examine how the kinetic energy is distributed in time-dependent solutions of the Schrodinger equation corresponding to the cases of a free particle, a particle undergoing uniform acceleration, a particle in a harmonic oscillator potential, and a system corresponding to an unstable equilibrium. We find, for specific choices of initial parameters, that as much as 90% of the kinetic energy can be localized (at least conceptually) in the `front half' of such Gaussian wave packets, and we visualize these effects.Comment: 22 pages, RevTeX, four .eps figures, to appear in Found. Phys. Lett. Vol. 17, Dec. 200

    Vacuum Chamber Pressure Maps of a Hall Thruster Cold-Flow Expansion

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77271/1/AIAA-8973-917.pd
    • …
    corecore