19 research outputs found

    Quantitation of Vacuolar Sugar Transporter Abundance Changes Using QconCAT Synthtetic Peptides

    Get PDF
    Measurements of protein abundance changes are important for biological conclusions on protein-related processes such as activity or complex formation. Proteomic analyses in general are almost routine tasks in many laboratories, but a precise and quantitative description of (absolute) protein abundance changes require careful experimental design and precise data quality. Today, a vast choice of metabolic labeling and label free quantitation protocols are available, but the trade-off between quantitative precision and proteome coverage of quantified proteins including missing value problems remain. Here, we provide an example of a targeted proteomic approach using artificial standard proteins consisting of concatenated peptides of interest (QconCAT) to specifically quantify abiotic stress-induced abundance changes in low abundant vacuolar transporters. An advantage of this approach is the reliable quantitation of alimited set of low-abundant target proteins throughout different conditions. We show that vacuolar ATPase AVP1 and sugar transporters of the ERDL (early responsive to dehydration-like) family and TMT2 (tonoplast monosaccharide transporter 2) showed increased abundance upon salt stress

    14-3-3 Proteins and Other Candidates form Protein-Protein Interactions with the Cytosolic C-terminal End of SOS1 Affecting Its Transport Activity

    Get PDF
    The plasma membrane transporter SOS1 (SALT-OVERLY SENSITIVE1) is vital for plant survival under salt stress. SOS1 activity is tightly regulated, but little is known about the underlying mechanism. SOS1 contains a cytosolic, autoinhibitory C-terminal tail (abbreviated as SOS1 C-term), which is targeted by the protein kinase SOS2 to trigger its transport activity. Here, to identify additional binding proteins that regulate SOS1 activity, we synthesized the SOS1 C-term domain and used it as bait to probe Arabidopsis thaliana cell extracts. Several 14-3-3 proteins, which function in plant salt tolerance, specifically bound to and interacted with the SOS1 C-term. Compared to wild-type plants, when exposed to salt stress, Arabidopsis plants overexpressing SOS1 C-term showed improved salt tolerance, significantly reduced Na+ accumulation in leaves, reduced induction of the salt-responsive gene WRKY25, decreased soluble sugar, starch, and proline levels, less impaired inflorescence formation and increased biomass. It appears that overexpressing SOS1 C-term leads to the sequestration of inhibitory 14-3-3 proteins, allowing SOS1 to be more readily activated and leading to increased salt tolerance. We propose that the SOS1 C-term binds to previously unknown proteins such as 14-3-3 isoforms, thereby regulating salt tolerance. This finding uncovers another regulatory layer of the plant salt tolerance program

    Designed Azolopyridinium Salts Block Protective Antigen Pores In Vitro and Protect Cells from Anthrax Toxin

    Get PDF
    Background:Several intracellular acting bacterial protein toxins of the AB-type, which are known to enter cells by endocytosis, are shown to produce channels. This holds true for protective antigen (PA), the binding component of the tripartite anthrax-toxin of Bacillus anthracis. Evidence has been presented that translocation of the enzymatic components of anthrax-toxin across the endosomal membrane of target cells and channel formation by the heptameric/octameric PA63 binding/translocation component are related phenomena. Chloroquine and some 4-aminoquinolones, known as potent drugs against Plasmodium falciparium infection of humans, block efficiently the PA63-channel in a dose dependent way.Methodology/Principal Findings:Here we demonstrate that related positively charged heterocyclic azolopyridinium salts block the PA63-channel in the μM range, when both, inhibitor and PA63 are added to the same side of the membrane, the cis-side, which corresponds to the lumen of acidified endosomal vesicles of target cells. Noise-analysis allowed the study of the kinetics of the plug formation by the heterocycles. In vivo experiments using J774A.1 macrophages demonstrated that the inhibitors of PA63-channel function also efficiently block intoxication of the cells by the combination lethal factor and PA63 in the same concentration range as they block the channels in vitro.Conclusions/Significance:These results strongly argue in favor of a transport of lethal factor through the PA63-channel and suggest that the heterocycles used in this study could represent attractive candidates for development of novel therapeutic strategies against anthrax. © 2013 Beitzinger et al

    Regulation von Zucker- und Ionentransport in Arabidopsis thaliana mit besonderer BerĂĽcksichtigung von Transportern und regulatorischen Proteinen

    Get PDF
    Im Rahmen dieser Arbeit sollten weiterführende Erkenntnisse über die Regulation des Na+/H+-Antiporters AtSOS1 erbracht werden. Die Analyse von Mutanten, die den zytosolischen AtSOS1 C terminus überexprimieren, bestätigte eine im Vergleich zum Wildtyp erhöhte Salztoleranz. Diese Feststellung lässt sich an verschiedenen Beobachtungen festmachen: Unter Salzstressbedingungen i.) akkumulieren die Überexpressionsmutanten deutlich weniger Natrium im Spross, ii.) sie blühen früher, iii.) sie weisen eine geringere Expression des Salz-induzierten Gens wrky25 auf, iv.) sie häufen geringere Mengen „kompatibler Solute“ an und v.) sie speichern weniger Stärke im Vergleich zum Wildtyp. Zusammenfassend lässt sich festhalten, dass die Überexpression der C-terminalen Domäne des SOS1 zu einer erhöhten Salztoleranz der entsprechenden Mutanten durch erhöhte Aktivierung des endogenen SOS1-Transporters führt. Es lässt sich spekulieren, dass negative Regulatoren des SOS-Signalwegs vom löslichen C-terminus abgefangen werden, wodurch ihre inhibierende Funktion auf das endogene SOS-Netzwerk verloren geht. Im Gegensatz dazu führt der Verlust des SOS1-Transporters in den sos1 Knockout-Pflanzen zu einer erhöhten Salzsensitivität. Diese Feststellung lässt sich wiederum an verschiedenen Beobachtungen festmachen: Unter Salzstressbedingungen i.) akkumulieren die Knockout-Mutanten deutlich mehr Natrium im Spross sowie vor allem in der Wurzel, ii.) sie blühen verzögert bis gar nicht, iii.) sie weisen eine höhere Expression des Salzstress-Indikatorgens wrky25 auf, iv.) sie häufen große Mengen kompatibler Solute in Form löslicher Zucker an und v.) sie speichern mehr Stärke im Vergleich zum Wildtyp. In der vorliegenden Arbeit wurden die Interaktionen zwischen dem SOS1 C terminus und den regulatorischen At14-3-3 Proteinen υ, ω, κ und λ, sowie zwischen AtTST1/AtVIK1 und 14-3-3 κ und λ mittels Bimolekularer Fluoreszenz-Komplementation verifiziert. Sie binden den SOS1 C terminus an der Stelle 1112TRQNTMVESSDEEDEDEG1129, den AtTST1 an der Stelle 361DDGAGDDDDSDNDLR375. Beide Bindemotive weisen einen hohen Anteil negativ geladener Aspartat- und Glutamat-Reste auf. Durch die Analyse von At14 3 3 λκ Knockout-Pflanzen wurden diese Proteine als Signalstoffe im Zuckerhaushalt von A. thaliana identifiziert. Ihr Fehlen führt zu einer Veränderung im „sugar sensing“ bzw. „sugar signaling“. Diese Behauptung lässt sich an verschiedenen Beobachtungen festmachen: Unter Hochzucker-Bedingungen i.) akkumulieren die Knockout-Mutanten mehr Biomasse, ii.) sie akkumulieren weniger Zucker und iii.) sie weisen eine gesteigerte Expression der Glukose-reprimierten Gene cab1 und suc2 auf

    Regulation von Zucker- und Ionentransport in Arabidopsis thaliana mit besonderer BerĂĽcksichtigung von Transportern und regulatorischen Proteinen

    No full text
    Im Rahmen dieser Arbeit sollten weiterführende Erkenntnisse über die Regulation des Na+/H+-Antiporters AtSOS1 erbracht werden. Die Analyse von Mutanten, die den zytosolischen AtSOS1 C terminus überexprimieren, bestätigte eine im Vergleich zum Wildtyp erhöhte Salztoleranz. Diese Feststellung lässt sich an verschiedenen Beobachtungen festmachen: Unter Salzstressbedingungen i.) akkumulieren die Überexpressionsmutanten deutlich weniger Natrium im Spross, ii.) sie blühen früher, iii.) sie weisen eine geringere Expression des Salz-induzierten Gens wrky25 auf, iv.) sie häufen geringere Mengen „kompatibler Solute“ an und v.) sie speichern weniger Stärke im Vergleich zum Wildtyp. Zusammenfassend lässt sich festhalten, dass die Überexpression der C-terminalen Domäne des SOS1 zu einer erhöhten Salztoleranz der entsprechenden Mutanten durch erhöhte Aktivierung des endogenen SOS1-Transporters führt. Es lässt sich spekulieren, dass negative Regulatoren des SOS-Signalwegs vom löslichen C-terminus abgefangen werden, wodurch ihre inhibierende Funktion auf das endogene SOS-Netzwerk verloren geht. Im Gegensatz dazu führt der Verlust des SOS1-Transporters in den sos1 Knockout-Pflanzen zu einer erhöhten Salzsensitivität. Diese Feststellung lässt sich wiederum an verschiedenen Beobachtungen festmachen: Unter Salzstressbedingungen i.) akkumulieren die Knockout-Mutanten deutlich mehr Natrium im Spross sowie vor allem in der Wurzel, ii.) sie blühen verzögert bis gar nicht, iii.) sie weisen eine höhere Expression des Salzstress-Indikatorgens wrky25 auf, iv.) sie häufen große Mengen kompatibler Solute in Form löslicher Zucker an und v.) sie speichern mehr Stärke im Vergleich zum Wildtyp. In der vorliegenden Arbeit wurden die Interaktionen zwischen dem SOS1 C terminus und den regulatorischen At14-3-3 Proteinen υ, ω, κ und λ, sowie zwischen AtTST1/AtVIK1 und 14-3-3 κ und λ mittels Bimolekularer Fluoreszenz-Komplementation verifiziert. Sie binden den SOS1 C terminus an der Stelle 1112TRQNTMVESSDEEDEDEG1129, den AtTST1 an der Stelle 361DDGAGDDDDSDNDLR375. Beide Bindemotive weisen einen hohen Anteil negativ geladener Aspartat- und Glutamat-Reste auf. Durch die Analyse von At14 3 3 λκ Knockout-Pflanzen wurden diese Proteine als Signalstoffe im Zuckerhaushalt von A. thaliana identifiziert. Ihr Fehlen führt zu einer Veränderung im „sugar sensing“ bzw. „sugar signaling“. Diese Behauptung lässt sich an verschiedenen Beobachtungen festmachen: Unter Hochzucker-Bedingungen i.) akkumulieren die Knockout-Mutanten mehr Biomasse, ii.) sie akkumulieren weniger Zucker und iii.) sie weisen eine gesteigerte Expression der Glukose-reprimierten Gene cab1 und suc2 auf

    14-3-3 Proteins and Other Candidates form Protein-Protein Interactions with the Cytosolic C-terminal End of SOS1 Affecting Its Transport Activity

    No full text
    The plasma membrane transporter SOS1 (SALT-OVERLY SENSITIVE1) is vital for plant survival under salt stress. SOS1 activity is tightly regulated, but little is known about the underlying mechanism. SOS1 contains a cytosolic, autoinhibitory C-terminal tail (abbreviated as SOS1 C-term), which is targeted by the protein kinase SOS2 to trigger its transport activity. Here, to identify additional binding proteins that regulate SOS1 activity, we synthesized the SOS1 C-term domain and used it as bait to probe Arabidopsis thaliana cell extracts. Several 14-3-3 proteins, which function in plant salt tolerance, specifically bound to and interacted with the SOS1 C-term. Compared to wild-type plants, when exposed to salt stress, Arabidopsis plants overexpressing SOS1 C-term showed improved salt tolerance, significantly reduced Na+ accumulation in leaves, reduced induction of the salt-responsive gene WRKY25, decreased soluble sugar, starch, and proline levels, less impaired inflorescence formation and increased biomass. It appears that overexpressing SOS1 C-term leads to the sequestration of inhibitory 14-3-3 proteins, allowing SOS1 to be more readily activated and leading to increased salt tolerance. We propose that the SOS1 C-term binds to previously unknown proteins such as 14-3-3 isoforms, thereby regulating salt tolerance. This finding uncovers another regulatory layer of the plant salt tolerance progra

    14-3-3 Proteins and Other Candidates form Protein-Protein Interactions with the Cytosolic C-terminal End of SOS1 Affecting Its Transport Activity

    Get PDF
    The plasma membrane transporter SOS1 (SALT-OVERLY SENSITIVE1) is vital for plant survival under salt stress. SOS1 activity is tightly regulated, but little is known about the underlying mechanism. SOS1 contains a cytosolic, autoinhibitory C-terminal tail (abbreviated as SOS1 C-term), which is targeted by the protein kinase SOS2 to trigger its transport activity. Here, to identify additional binding proteins that regulate SOS1 activity, we synthesized the SOS1 C-term domain and used it as bait to probe Arabidopsis thaliana cell extracts. Several 14-3-3 proteins, which function in plant salt tolerance, specifically bound to and interacted with the SOS1 C-term. Compared to wild-type plants, when exposed to salt stress, Arabidopsis plants overexpressing SOS1 C-term showed improved salt tolerance, significantly reduced Na+ accumulation in leaves, reduced induction of the salt-responsive gene WRKY25, decreased soluble sugar, starch, and proline levels, less impaired inflorescence formation and increased biomass. It appears that overexpressing SOS1 C-term leads to the sequestration of inhibitory 14-3-3 proteins, allowing SOS1 to be more readily activated and leading to increased salt tolerance. We propose that the SOS1 C-term binds to previously unknown proteins such as 14-3-3 isoforms, thereby regulating salt tolerance. This finding uncovers another regulatory layer of the plant salt tolerance progra

    Impact of salt stress, cell death, and autophagy on peroxisomes: quantitative and morphological analyses using small Fluorescent probe N-BODIPY

    Get PDF
    Plant peroxisomes maintain a plethora of key life processes including fatty acid β-oxidation, photorespiration, synthesis of hormones, and homeostasis of reactive oxygen species (ROS). Abundance of peroxisomes in cells is dynamic; however mechanisms controlling peroxisome proliferation remain poorly understood because measuring peroxisome abundance is technically challenging. Counting peroxisomes in individual cells of complex organs by electron or fluorescence microscopy is expensive and time consuming. Here we present a simple technique for quantifying peroxisome abundance using the small probe Nitro-BODIPY, which in vivo fluoresces selectively inside peroxisomes. The physiological relevance of our technique was demonstrated using salinity as a known inducer of peroxisome proliferation. While significant peroxisome proliferation was observed in wild-type Arabidopsis leaves following 5-hour exposure to NaCl, no proliferation was detected in the salt-susceptible mutants fry1-6, sos1-14, and sos1-15. We also found that N-BODIPY detects aggregation of peroxisomes during final stages of programmed cell death and can be used as a marker of this stage. Furthermore, accumulation of peroxisomes in an autophagy-deficient Arabidopsis mutant atg5 correlated with N-BODIPY labeling. In conclusion, the technique reported here enables quantification of peroxisomes in plant material at various physiological settings. Its potential applications encompass identification of genes controlling peroxisome homeostasis and capturing stress-tolerant genotypes

    HA1568 protects J774A.

    No full text
    <p>1 cells against the cytotoxic effect of PA63/LF. J774.A1 cells were incubated for 30 min at 37°C with 100 µM of HA1568 and subsequently PA<sub>63</sub> (1 µg/mL) plus LF (1 µg/mL) were added to the medium. <i>A.</i> Cells were further incubated in the presence of the toxin and HA1568 at 37°C and pictures were taken after 2 h. <i>B.</i> The percentage of lysed cells was determined from the pictures. Data are given as mean ± S.D (n = 3; *** = p<0.0005).</p
    corecore