23 research outputs found

    Purcell-enhanced and indistinguishable single-photon generation from quantum dots coupled to on-chip integrated ring resonators

    Get PDF
    Funding: Ł.D.acknowledges the financial support from the Alexander von Humboldt Foundation. S.-H. K. acknowledges the financial support from the National Research Foundation of Korea through the Korean Government Grant NRF-2019R1A2C4069587. We are furthermore grateful for the support by the State of Bavaria.Integrated photonic circuits provide a versatile toolbox of functionalities for advanced quantum optics applications. Here, we demonstrate an essential component of such a system in the form of a Purcell-enhanced single-photon source based on a quantum dot coupled to a robust on-chip integrated resonator. For that, we develop GaAs monolithic ring cavities based on distributed Bragg reflector ridge waveguides. Under resonant excitation conditions, we observe an over 2-fold spontaneous emission rate enhancement using Purcell effect and gain a full coherent optical control of a QD-two-level system via Rabi oscillations. Furthermore, we demonstrate an on-demand single-photon generation with strongly suppressed multiphoton emission probability as low as 1% and two-photon interference with visibility up to 95%. This integrated single-photon source can be readily scaled up, promising a realistic pathway for scalable on-chip linear optical quantum simulation, quantum computation, and quantum networks.PostprintPeer reviewe

    Relaxation oscillations and ultrafast emission pulses in a disordered expanding polariton condensate

    Get PDF
    Semiconductor microcavities are often influenced by structural imperfections, which can disturb the flow and dynamics of exciton-polariton condensates. Additionally, in exciton-polariton condensates there is a variety of dynamical scenarios and instabilities, owing to the properties of the incoherent excitonic reservoir. We investigate the dynamics of an exciton-polariton condensate which emerges in semiconductor microcavity subject to disorder, which determines its spatial and temporal behaviour. Our experimental data revealed complex burst-like time evolution under non-resonant optical pulsed excitation. The temporal patterns of the condensate emission result from the intrinsic disorder and are driven by properties of the excitonic reservoir, which decay in time much slower with respect to the polariton condensate lifetime. This feature entails a relaxation oscillation in polariton condensate formation, resulting in ultrafast emission pulses of coherent polariton field. The experimental data can be well reproduced by numerical simulations, where the condensate is coupled to the excitonic reservoir described by a set of rate equations. Theory suggests the existence of slow reservoir temporarily emptied by stimulated scattering to the condensate, generating ultrashort pulses of the condensate emission.Publisher PDFPeer reviewe

    Relaxation oscillations and ultrafast emission pulses in a disordered expanding polariton condensate

    Get PDF
    Semiconductor microcavities are often influenced by structural imperfections, which can disturb the flow and dynamics of exciton-polariton condensates. Additionally, in exciton-polariton condensates there is a variety of dynamical scenarios and instabilities, owing to the properties of the incoherent excitonic reservoir. We investigate the dynamics of an exciton-polariton condensate which emerges in semiconductor microcavity subject to disorder, which determines its spatial and temporal behaviour. Our experimental data revealed complex burst-like time evolution under non-resonant optical pulsed excitation. The temporal patterns of the condensate emission result from the intrinsic disorder and are driven by properties of the excitonic reservoir, which decay in time much slower with respect to the polariton condensate lifetime. This feature entails a relaxation oscillation in polariton condensate formation, resulting in ultrafast emission pulses of coherent polariton field. The experimental data can be well reproduced by numerical simulations, where the condensate is coupled to the excitonic reservoir described by a set of rate equations. Theory suggests the existence of slow reservoir temporarily emptied by stimulated scattering to the condensate, generating ultrashort pulses of the condensate emission.Publisher PDFPeer reviewe

    Optomechanical tuning of the polarization properties of micropillar cavity systems with embedded quantum dots

    Get PDF
    funding by the DFG within the project SCHN1376-5.1 and PR1749/1-1. Further, we acknowledge financial support by the State of Bavaria and the German Ministry of Education and Research (BMBF) within the project Q.Link.X (FKZ 16KIS0871). Project HYPER-U-P-S has received funding from the QuantERA ERA-NET Cofund in Quantum Technologies implemented within the European Union's Horizon 2020 Programme. AP would like to thank the Swedish Research Council and Carl Tryggers Stiftelse. J. M.-S. acknowledges financial support from the Ramon y Cajal Program from the Government of Spain (RYC2018-026196-I) and the ClarinProgramme from the Government of the Principality of Asturias and a Marie Curie-COFUND grant (PA-18-ACB17-29).Strain tuning emerged as an appealing tool for tuning of fundamental optical properties of solid state quantum emitters. In particular, the wavelength and fine structure of quantum dot states can be tuned using hybrid semiconductor-piezoelectric devices. Here, we show how an applied external stress can directly impact the polarization properties of coupled InAs quantum dot-micropillar cavity systems. In our experiment, we find that we can reversibly tune the anisotropic polarization splitting of the fundamental microcavity mode by approximately 60 μeV. We discuss the origin of this tuning mechanism, which arises from an interplay between elastic deformation and the photoelastic effect in our micropillar. Finally, we exploit this effect to tune the quantum dot polarization opto-mechanically via the polarization-anisotropic Purcell effect. Our work paves the way for optomechanical and reversible tuning of the polarization and spin properties of light-matter coupled solid state systems.PostprintPeer reviewe

    Ghost Branch Photoluminescence From a Polariton Fluid Under Nonresonant Excitation

    Get PDF
    An expanding polariton condensate is investigated under pulsed nonresonant excitation with a small laser pump spot. Far above the condensation threshold we observe a pronounced increase in the dispersion curvature with a subsequent linearization of the spectrum and strong luminescence from a ghost branch orthogonally polarized with respect to the linearly polarized condensate emission. The presence of the ghost branch has been confirmed in time-resolved measurements. The dissipative and nonequilibrium effects in the photoluminescence of polariton condensates and their excitations are discussed.Comment: 13 pages, 4 figure

    Observation of room temperature excitons in an atomically thin topological insulator

    Get PDF
    Optical spectroscopy of ultimately thin materials has significantly enhanced our understanding of collective excitations in low-dimensional semiconductors. This is particularly reflected by the rich physics of excitons in atomically thin crystals which uniquely arises from the interplay of strong Coulomb correlation, spin-orbit coupling (SOC), and lattice geometry. Here we extend the field by reporting the observation of room temperature excitons in a material of non-trivial global topology. We study the fundamental optical excitation spectrum of a single layer of bismuth atoms epitaxially grown on a SiC substrate (hereafter bismuthene or Bi/SiC) which has been established as a large-gap, two-dimensional (2D) quantum spin Hall (QSH) insulator. Strongly developed optical resonances are observed to emerge around the direct gap at the K and K' points of the Brillouin zone, indicating the formation of bound excitons with considerable oscillator strength. These experimental findings are corroborated, concerning both the character of the excitonic resonances as well as their energy scale, by ab-initio \emph{GW} and Bethe-Salpeter equation calculations, confirming strong Coulomb interaction effects in these optical excitations. Our observations provide the first evidence of excitons in a 2D QSH insulator at room temperature, with excitonic and topological physics deriving from the very same electronic structure

    Resonance fluorescence from an atomic-quantum-memory compatible single photon source based on GaAs droplet quantum dots

    Get PDF
    This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 721394. We furthermore gratefully acknowledge support by the State of Bavaria.Single photon sources, which are compatible with quantum memories are an important component of quantum networks. In this article, we show optical investigations on isolated GaAs/Al0.25Ga0.75As quantum dots grown via droplet epitaxy, which emit single photons on resonance with the Rb-87-D2 line (780 nm). Under continuous wave resonant excitation conditions, we observe bright, clean and narrowband resonance fluorescence emission from such a droplet quantum dot. Furthermore, the second-order correlation measurement clearly demonstrates the single photon emission from this resonantly driven transition. Spectrally resolved resonance fluorescence of a similar quantum dot yields a linewidth as narrow as 660 MHz (2.7 μeV ), which corresponds to a coherence time of 0.482 ns. The observed linewidth is the smallest reported so far for strain free GaAs quantum dots grown via the droplet method. We believe that this single photon source can be a prime candidate for applications in optical quantum networks.PostprintPeer reviewe

    Strong Purcell enhancement of an optical magnetic dipole transition

    Full text link
    Engineering the local density of states with nanophotonic structures is a powerful tool to control light-matter interactions via the Purcell effect. At optical frequencies, control over the electric field density of states is typically used to couple to and manipulate electric dipole transitions. However, it is also possible to engineer the magnetic density of states to control magnetic dipole transitions. In this work, we experimentally demonstrate the optical magnetic Purcell effect using a single rare earth ion coupled to a nanophotonic cavity. We engineer a new single photon emitter, Er3+^{3+} in MgO, where the electric dipole decay rate is strongly suppressed by the cubic site symmetry, giving rise to a nearly pure magnetic dipole optical transition. This allows the unambiguous determination of a magnetic Purcell factor Pm=1040±30P_m=1040 \pm 30. We further extend this technique to realize a magnetic dipole spin-photon interface, performing optical spin initialization and readout of a single Er3+^{3+} electron spin. This work demonstrates the fundamental equivalence of electric and magnetic density of states engineering, and provides a new tool for controlling light-matter interactions for a broader class of emitters

    Quantum dots in micropillar cavities for scalable photonic applications

    Get PDF
    Scalable quantum photonic applications require wavelength reproducibility and high quality of the emitted photons. To address these issues, we investigate strain-tuning of self-assembled semiconductor quantum dots embedded into micropillar cavities
    corecore