587 research outputs found

    Gypsum-DL: an open-source program for preparing small-molecule libraries for structure-based virtual screening

    Get PDF
    Computational techniques such as structure-based virtual screening require carefully prepared 3D models of potential small-molecule ligands. Though powerful, existing commercial programs for virtual-library preparation have restrictive and/or expensive licenses. Freely available alternatives, though often effective, do not fully account for all possible ionization, tautomeric, and ring-conformational variants. We here present Gypsum-DL, a free, robust open-source program that addresses these challenges. As input, Gypsum-DL accepts virtual compound libraries in SMILES or flat SDF formats. For each molecule in the virtual library, it enumerates appropriate ionization, tautomeric, chiral, cis/trans isomeric, and ring-conformational forms. As output, Gypsum-DL produces an SDF file containing each molecular form, with 3D coordinates assigned. To demonstrate its utility, we processed 1558 molecules taken from the NCI Diversity Set VI and 56,608 molecules taken from a Distributed Drug Discovery (D3) combinatorial virtual library. We also used 4463 high-quality protein-ligand complexes from the PDBBind database to show that Gypsum-DL processing can improve virtual-screening pose prediction. Gypsum-DL is available free of charge under the terms of the Apache License, Version 2.0

    AutoClickChem: Click Chemistry in Silico

    Get PDF
    Academic researchers and many in industry often lack the financial resources available to scientists working in “big pharma.” High costs include those associated with high-throughput screening and chemical synthesis. In order to address these challenges, many researchers have in part turned to alternate methodologies. Virtual screening, for example, often substitutes for high-throughput screening, and click chemistry ensures that chemical synthesis is fast, cheap, and comparatively easy. Though both in silico screening and click chemistry seek to make drug discovery more feasible, it is not yet routine to couple these two methodologies. We here present a novel computer algorithm, called AutoClickChem, capable of performing many click-chemistry reactions in silico. AutoClickChem can be used to produce large combinatorial libraries of compound models for use in virtual screens. As the compounds of these libraries are constructed according to the reactions of click chemistry, they can be easily synthesized for subsequent testing in biochemical assays. Additionally, in silico modeling of click-chemistry products may prove useful in rational drug design and drug optimization. AutoClickChem is based on the pymolecule toolbox, a framework that may facilitate the development of future python-based programs that require the manipulation of molecular models. Both the pymolecule toolbox and AutoClickChem are released under the GNU General Public License version 3 and are available for download from http://autoclickchem.ucsd.edu

    ‘The International Teacher Leadership project,’ a case of international action research.

    Get PDF
    Copyright CARNThe paper arises from the International Teacher Leadership project, a research and development project involving researchers and practitioners in 14 European countries. The paper provides a conceptual exploration of the idea of teacher leadership and its role in educational reform, central to which is the idea that teachers, regardless of their level of power and organisational position, can engage in the leadership of enquiry-based development activity aimed at influencing their colleagues and embedding improved practices in their schools. The paper provides an outline of the project’s methodology which builds on that used in the Carpe Vitam Leadership for Learning project (Frost, 2008a). It is a form of collaborative action research which is highly developmental and discursive. It seeks to identify principles, strategies and tools that can be applied in a range of cultural settings. The paper includes a thematic analysis of the cultural contexts and policy environments of the participating countries in order to identify the obstacles to teacher leadership and to inform the nature of the support strategies employed

    The influence of REM sleep and SWS on emotional memory consolidation in participants reporting depressive symptoms

    Get PDF
    Negative emotional memory bias is thought to play a causal role in the onset and maintenance of major depressive disorder. Rapid Eye Movement (REM) sleep has been shown to selectively consolidate negative emotional memories in healthy participants, and is greater in quantity and density in depressed patients. Slow-Wave Sleep (SWS) is typically associated with the consolidation of non-emotional memories. However, the effects of REM sleep and SWS on emotional memory consolidation have not been investigated in participants reporting depressive symptoms. In this study, we recruited two groups of healthy participants; one reporting mild-to-moderate depressive symptoms, and another reporting minimal depressive symptoms (assessed using the Beck Depression Inventory; BDI-II). Using a within-subjects split-night design, we measured consolidation of positive, neutral and negative images across a 3 h retention interval rich in either REM sleep or SWS. We found a significant sleep condition x image valence interaction in participants reporting depressive symptoms [F (2, 20) = 4.73, p = .021], but not participants reporting minimal depressive symptoms [F (2, 22) = 0.17, p = .845]. Participants reporting depressive symptoms consolidated significantly more neutral memories during SWS, and marginally more negative memories during REM sleep, than those reporting minimal depressive symptoms [t (21) = 2.44, p = .023; t (21) = 1.96, p = .064, respectively]. Our preliminary results demonstrate that REM sleep and SWS have differential effects on the consolidation of emotional and neutral images in participants reporting depressive symptoms. Further studies including larger sample sizes are required to investigate whether REM sleep alterations promote the development of negative memory bias in major depressive disorder

    The Phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P 3 ) Binder Rasa3 Regulates Phosphoinositide 3-kinase (PI3K)-dependent Integrin α IIb β 3 Outside-in Signaling

    Get PDF
    The class I PI3K family of lipid kinases plays an important role in integrin αIIbβ3 function, thereby supporting thrombus growth and consolidation. Here, we identify Ras/Rap1GAP Rasa3 (GAP1IP4BP) as a major phosphatidylinositol 3,4,5-trisphosphate-binding protein in human platelets and a key regulator of integrin αIIbβ3 outside-in signaling. We demonstrate that cytosolic Rasa3 translocates to the plasma membrane in a PI3K-dependent manner upon activation of human platelets. Expression of wild-type Rasa3 in integrin αIIbβ3-expressing CHO cells blocked Rap1 activity and integrin αIIbβ3-mediated spreading on fibrinogen. In contrast, Rap1GAP-deficient (P489V) and Ras/Rap1GAP-deficient (R371Q) Rasa3 had no effect. We furthermore show that two Rasa3 mutants (H794L and G125V), which are expressed in different mouse models of thrombocytopenia, lack both Ras and Rap1GAP activity and do not affect integrin αIIbβ3-mediated spreading of CHO cells on fibrinogen. Platelets from thrombocytopenic mice expressing GAP-deficient Rasa3 (H794L) show increased spreading on fibrinogen, which in contrast to wild-type platelets is insensitive to PI3K inhibitors. Together, these results support an important role for Rasa3 in PI3K-dependent integrin αIIbβ3-mediated outside-in signaling and cell spreading

    Resonant nonlinear magneto-optical effects in atoms

    Get PDF
    In this article, we review the history, current status, physical mechanisms, experimental methods, and applications of nonlinear magneto-optical effects in atomic vapors. We begin by describing the pioneering work of Macaluso and Corbino over a century ago on linear magneto-optical effects (in which the properties of the medium do not depend on the light power) in the vicinity of atomic resonances, and contrast these effects with various nonlinear magneto-optical phenomena that have been studied both theoretically and experimentally since the late 1960s. In recent years, the field of nonlinear magneto-optics has experienced a revival of interest that has led to a number of developments, including the observation of ultra-narrow (1-Hz) magneto-optical resonances, applications in sensitive magnetometry, nonlinear magneto-optical tomography, and the possibility of a search for parity- and time-reversal-invariance violation in atoms.Comment: 51 pages, 23 figures, to appear in Rev. Mod. Phys. in Oct. 2002, Figure added, typos corrected, text edited for clarit

    Teaching computer-assisted qualitative data analysis to a large cohort of undergraduate students

    Get PDF
    Qualitative research is increasingly being conducted with the support of computer-assisted qualitative data analysis software (CAQDAS), yet limited research has been conducted on integrating the teaching of CAQDAS packages within qualitative methods university courses. Existing research typically focuses on teaching NVivo to small groups of postgraduate (primarily doctoral) students and mostly take the form of reflections of the trainers. In 2011, we implemented the teaching and use of a CAQDAS package, NVivo, within a large third-year undergraduate psychology research methods unit. Sixty-seven students participated in an online survey evaluating the use of NVivo in the unit. In this paper, we present quantitative and qualitative findings related to students' perceptions of the resources provided, their confidence in using NVivo, their satisfaction with the teaching and their intentions to use CAQDAS in the future. Student evaluations were generally positive, but highlighted the need for both increased class time and greater access to the CAQDAS program outside of class time to enhance opportunities for learning

    Transmembrane protein 97 is a potential synaptic amyloid beta receptor in human Alzheimer’s disease

    Get PDF
    Synapse loss correlates with cognitive decline in Alzheimer’s disease, and soluble oligomeric amyloid beta (Aβ) is implicated in synaptic dysfunction and loss. An important knowledge gap is the lack of understanding of how Aβ leads to synapse degeneration. In particular, there has been difficulty in determining whether there is a synaptic receptor that binds Aβ and mediates toxicity. While many candidates have been observed in model systems, their relevance to human AD brain remains unknown. This is in part due to methodological limitations preventing visualization of Aβ binding at individual synapses. To overcome this limitation, we combined two high resolution microscopy techniques: array tomography and Förster resonance energy transfer (FRET) to image over 1 million individual synaptic terminals in temporal cortex from AD (n = 11) and control cases (n = 9). Within presynapses and post-synaptic densities, oligomeric Aβ generates a FRET signal with transmembrane protein 97. Further, Aβ generates a FRET signal with cellular prion protein, and post-synaptic density 95 within post synapses. Transmembrane protein 97 is also present in a higher proportion of post synapses in Alzheimer’s brain compared to controls. We inhibited Aβ/transmembrane protein 97 interaction in a mouse model of amyloidopathy by treating with the allosteric modulator CT1812. CT1812 drug concentration correlated negatively with synaptic FRET signal between transmembrane protein 97 and Aβ. In human-induced pluripotent stem cell derived neurons, transmembrane protein 97 is present in synapses and colocalizes with Aβ when neurons are challenged with human Alzheimer’s brain homogenate. Transcriptional changes are induced by Aβ including changes in genes involved in neurodegeneration and neuroinflammation. CT1812 treatment of these neurons caused changes in gene sets involved in synaptic function. These data support a role for transmembrane protein 97 in the synaptic binding of Aβ in human Alzheimer’s disease brain where it may mediate synaptotoxicity

    The Chromatin Remodeler SPLAYED Regulates Specific Stress Signaling Pathways

    Get PDF
    Organisms are continuously exposed to a myriad of environmental stresses. Central to an organism's survival is the ability to mount a robust transcriptional response to the imposed stress. An emerging mechanism of transcriptional control involves dynamic changes in chromatin structure. Alterations in chromatin structure are brought about by a number of different mechanisms, including chromatin modifications, which covalently modify histone proteins; incorporation of histone variants; and chromatin remodeling, which utilizes ATP hydrolysis to alter histone-DNA contacts. While considerable insight into the mechanisms of chromatin remodeling has been gained, the biological role of chromatin remodeling complexes beyond their function as regulators of cellular differentiation and development has remained poorly understood. Here, we provide genetic, biochemical, and biological evidence for the critical role of chromatin remodeling in mediating plant defense against specific biotic stresses. We found that the Arabidopsis SWI/SNF class chromatin remodeling ATPase SPLAYED (SYD) is required for the expression of selected genes downstream of the jasmonate (JA) and ethylene (ET) signaling pathways. SYD is also directly recruited to the promoters of several of these genes. Furthermore, we show that SYD is required for resistance against the necrotrophic pathogen Botrytis cinerea but not the biotrophic pathogen Pseudomonas syringae. These findings demonstrate not only that chromatin remodeling is required for selective pathogen resistance, but also that chromatin remodelers such as SYD can regulate specific pathways within biotic stress signaling networks
    corecore