2,030 research outputs found

    An investigation of environmental factors associated with the current and proposed jetty systems at Belle Pass, Louisiana

    Get PDF
    The history of the existing jetty system at Belle Pass was investigated to determine its past effect on the littoral currents and beach erosion. Present flow patterns and erosion rates were also studied, along with the prevailing recession rates of local beaches not influenced by the jetty system. Aerial photographs and maps were used in conjunction with periodic hydraulic measurements, ground observations, and physical measurements of beach erosion. A scale model was constructed to further the study of flow patterns and velocities. It is shown that the existing jetty has not adversely affected the coastline in the area; erosive processes have been retarded by the jetty and its companion groin. Future erosion patterns are predicted, and projected effects of the proposed jetty system are given

    X-ray photoemission spectroscopy determination of the InN/yttria stabilized cubic-zirconia valence band offset

    Get PDF
    The valence band offset of wurtzite InN(0001)/yttria stabilized cubic-zirconia (YSZ)(111) heterojunctions is determined by x-ray photoemission spectroscopy to be 1.19±0.17 eV giving a conduction band offset of 3.06±0.20 eV. Consequently, a type-I heterojunction forms between InN and YSZ in the straddling arrangement. The low lattice mismatch and high band offsets suggest potential for use of YSZ as a gate dielectric in high-frequency InN-based electronic devices

    An analytical treatment of the Clock Paradox in the framework of the Special and General Theories of Relativity

    Full text link
    In this paper we treat the so called clock paradox in an analytical way by assuming that a constant and uniform force F of finite magnitude acts continuously on the moving clock along the direction of its motion assumed to be rectilinear. No inertial motion steps are considered. The rest clock is denoted as (1), the to-and-fro moving clock is (2), the inertial frame in which (1) is at rest in its origin and (2) is seen moving is I and, finally, the accelerated frame in which (2) is at rest in its origin and (1) moves forward and backward is A. We deal with the following questions: I) What is the effect of the finite force acting on (2) on the proper time intervals measured by the two clocks when they reunite? Does a differential aging between the two clocks occur, as it happens when inertial motion and infinite values of the accelerating force is considered? The Special Theory of Relativity is used in order to describe the hyperbolic motion of (2) in the frame I II) Is this effect an absolute one, i.e. does the accelerated observer A comoving with (2) obtain the same results as that in I, both qualitatively and quantitatively, as it is expected? We use the General Theory of Relativity in order to answer this question.Comment: LaTex2e, 19 pages, no tables, no figures. Rewritten version, it amends the previous one whose results about the treatment with General Relativity were wrong. References added. Eq. (55) corrected. More refined version. Comments and suggestions are warmly welcom

    Reorientation of Spin Density Waves in Cr(001) Films induced by Fe(001) Cap Layers

    Full text link
    Proximity effects of 20 \AA thin Fe layers on the spin density waves (SDWs) in epitaxial Cr(001) films are revealed by neutron scattering. Unlike in bulk Cr we observe a SDW with its wave vector Q pointing along only one {100} direction which depends dramatically on the film thickness t_{Cr}. For t_{Cr} < 250 \AA the SDW propagates out-of-plane with the spins in the film plane. For t_{Cr} > 1000 \AA the SDW propagates in the film plane with the spins out-of-plane perpendicular to the in-plane Fe moments. This reorientation transition is explained by frustration effects in the antiferromagnetic interaction between Fe and Cr across the Fe/Cr interface due to steps at the interface.Comment: 4 pages (RevTeX), 3 figures (EPS

    The variant call format and VCFtools

    Get PDF
    Summary: The variant call format (VCF) is a generic format for storing DNA polymorphism data such as SNPs, insertions, deletions and structural variants, together with rich annotations. VCF is usually stored in a compressed manner and can be indexed for fast data retrieval of variants from a range of positions on the reference genome. The format was developed for the 1000 Genomes Project, and has also been adopted by other projects such as UK10K, dbSNP and the NHLBI Exome Project. VCFtools is a software suite that implements various utilities for processing VCF files, including validation, merging, comparing and also provides a general Perl API

    Addition-Deletion Networks

    Full text link
    We study structural properties of growing networks where both addition and deletion of nodes are possible. Our model network evolves via two independent processes. With rate r, a node is added to the system and this node links to a randomly selected existing node. With rate 1, a randomly selected node is deleted, and its parent node inherits the links of its immediate descendants. We show that the in-component size distribution decays algebraically, c_k ~ k^{-beta}, as k-->infty. The exponent beta=2+1/(r-1) varies continuously with the addition rate r. Structural properties of the network including the height distribution, the diameter of the network, the average distance between two nodes, and the fraction of dangling nodes are also obtained analytically. Interestingly, the deletion process leads to a giant hub, a single node with a macroscopic degree whereas all other nodes have a microscopic degree.Comment: 8 pages, 5 figure

    The Sequence Ontology: a tool for the unification of genome annotations

    Get PDF
    The Sequence Ontology ( SO) is a structured controlled vocabulary for the parts of a genomic annotation. SO provides a common set of terms and definitions that will facilitate the exchange, analysis and management of genomic data. Because SO treats part-whole relationships rigorously, data described with it can become substrates for automated reasoning, and instances of sequence features described by the SO can be subjected to a group of logical operations termed extensional mereology operators

    Applicability of frozen-viscosity models of unsteady wall shear stress

    Get PDF
    The validity of assumed frozen-viscosity conditions underpinning an important class of theoretical models of unsteady wall shear stress in transient flows in pipes and channels is assessed using detailed computational fluid dynamics (CFD) simulations. The need for approximate one-dimensional ð1DÞfx; tg models of the wall stress is unavoidable in analyses of transient flows in extensive pipe networks because it would be economically impracticable to use higher order methods of analysis. However, the bases of the various models have never been established rigorously. It is shown herein that a commonly used approach developed by the first authors is flawed in the case of smoothwall flows although it is more plausible for rough-wall flows. The assessment process is undertaken for a particular, but important, unsteady flow case, namely, a uniform acceleration from an initially steady turbulent flow. First, detailed predictions from a validated CFD method are used to derive baseline solutions with which predictions based on approximate models can be compared. Then, alternative solutions are obtained using various prescribed frozen-viscosity distributions. Differences between these solutions and the baseline solutions are used to determine which frozen-viscosity distributions are the most promising starting points for developing 1Dfx; tg models of unsteady components of wall shear stress. It is shown that no frozen-viscosity distribution performs well for large times after the commencement of an acceleration. However, even the simplest approximation (laminar) performs well for short durations—which is when the greatest amplitudes of the unsteady components occu
    corecore