15 research outputs found

    Pyrethroid insecticide exposure and cognitive developmental disabilities in children: The PELAGIE mother–child cohort

    No full text
    International audiencePyrethroid insecticides are widely used in agriculture and in homes. Despite the neurotoxicity of these insecticides at high doses, few studies have examined whether lower-level exposures could adversely affect children's neurodevelopment. The PELAGIE cohort included 3421 pregnant women from Brittany, France between 2002 and 2006. When their children reached their sixth birthday, 428 mothers from the cohort were randomly selected, successfully contacted and found eligible. A total of 287 (67%) mothers agreed to participate with their children in the neuropsychological follow-up. Two cognitive domains were assessed by the Wechsler Intelligence Scale for Children: verbal comprehension and working memory. Five pyrethroid and two organophosphate insecticide metabolites were measured in maternal and child first-void urine samples collected between 6 and 19 gestational weeks and at 6 years of age, respectively. Linear regression models were used to estimate associations between cognitive scores and urinary pyrethroid metabolite concentrations, adjusting for organophosphate metabolite concentrations and potential confounders. Maternal prenatal pyrethroid metabolite concentrations were not consistently associated with any children's cognitive scores. By contrast, childhood 3-PBA and cis-DBCA concentrations were both negatively associated with verbal comprehension scores (P-trend = 0.04 and P-trend < 0.01, respectively) and with working memory scores (P-trend = 0.05 and P-trend < 0.01, respectively). No associations were observed for the three other childhood pyrethroid metabolite concentrations (4-F-3-PBA, cis-DCCA, and trans-DCCA). Low-level childhood exposures to deltamethrin (as cis-DBCA is its principal and selective metabolite), in particular, and to pyrethroid insecticides, in general (as reflected in levels of the 3-PBA metabolite) may negatively affect neurocognitive development by 6 years of age. Whatever their etiology, these cognitive deficits may be of importance educationally, because cognitive impairments in children interfere with learning and social development. Potential causes that can be prevented are of paramount public health importanc

    Children's contrast sensitivity function in relation to organophosphate insecticide prenatal exposure in the mother-child PELAGIE cohort

    No full text
    International audienceHuman exposure to organophosphate pesticides (OP) is widespread. Several studies suggest that OP prenatal exposure alters the development of cognitive and behavioural functions in children, but the effects of OP prenatal exposure on child sensory functions are largely unknown. The aim of the study was to evaluate the association between OP prenatal exposure and visual processing in school-aged children from the mother-child PELAGIE cohort (France). OP biomarkers of exposure were measured in maternal urine samples at the beginning of pregnancy. The Functional Acuity Contrast Test (FACT) was used to assess visual contrast sensitivity in 180 children at 6 years of age. Linear regression models were performed on all children, and separately for boys and girls, taking into account various potential confounders, including maternal education and breastfeeding. No associations were observed in the whole sample, while maternal OP urinary metabolite levels were associated with a decrease of FACT scores in boys. These findings indicate that OP prenatal exposure might impair visual processing later in life in boys only

    Signaling pathways involved in postconditioning-induced cardioprotection of human myocardium, in vitro

    No full text
    We examined the respective role and relationship between protein kinase C (PKC), mitochondrial adenosine triphosphate-sensitive potassium (mitoK(ATP)) channel and p38 mitogen-activated protein kinase (MAPK) in postconditioning of human myocardium, in vitro. Isometrically contracting, isolated human right atrial trabeculae were exposed to 30 min hypoxia and 60 min reoxygenation. Phorbol 12-myristate 13-acetate (a PKC activator), diazoxide (a mitoK(ATP) opener) and anisomycin (a p38 MAPK activator) were superfused in early reoxygenation alone and with calphostin C (a PKC inhibitor), 5-hydroxy-decanoate (5-HD, a mitoK(ATP) channel inhibitor) and SB 202190 (a p38 MAPK inhibitor). Developed force at the end of the 60 min reoxygenation (FoC(60)) period was compared between groups (mean +/- SD). Phorbol 12-myristate 13-acetate (91 +/- 4% of baseline), diazoxide (85 +/- 5% of baseline) and anisomycin (90 +/- 4% of baseline) enhanced the FoC(60) as compared with the control group (53 +/- 7% of baseline, P < 0.0001). The enhanced FoC(60) induced by phorbol 12-myristate 13-acetate was abolished by calphostin C (52 +/- 5% of baseline) and 5-HD (56 +/- 3% of baseline), but not by SB 202190 (90 +/- 8%). The diazoxide-induced recovery of FoC(60) was attenuated by 5-HD (55 +/- 6% of baseline), but was not modified by calphostin C (87 +/- 5% of baseline) and SB 202190 (90 +/- 8% of baseline). The anisomycin-induced recovery of FoC(60) was abolished by calphostin C (61 +/- 9% of baseline) and SB 202190 (52 +/- 8% of baseline), but not by 5-HD (88 +/- 6% of baseline). In conclusion, PKC activation, opening of mitoK(ATP) channels and p38 MAPK activation in early reoxygenation induced the postconditioning of human myocardium, in vitro. Furthermore, PKC activation was upstream of the opening of mitoK(ATP) channels; p38 MAPK acted on PKC. Therefore, mitoK(ATP) and p38 MAPK seemed to be involved in two independent pathways

    Organophosphate Insecticide Metabolites in Prenatal and Childhood Urine Samples and Intelligence Scores at 6 Years of Age: Results from the Mother-Child PELAGIE Cohort (France)

    No full text
    International audienceBACKGROUND: Several studies suggest that exposure to organophosphate insecticides (OP) during pregnancy impairs neurodevelopment in children. OBJECTIVES: We evaluated associations between biomarkers of prenatal and postnatal OP exposure and cognitive function of 6-year-olds in a French longitudinal birth cohort. METHODS: In 2002-2006, the PELAGIE mother-child cohort enrolled pregnant women from Brittany. For a random subcohort, we measured nonspecific dialkylphosphate metabolites (DAP) of OP in one maternal urine sample, collected before 19 weeks' gestation, and in one urine sample collected from their 6-year-old children. Six subtests of the Wechsler Intelligence Scale for Children-4th edition (WISC-IV) was administered at 6 years to evaluate cognitive function (n=231). Linear regression models controlling for factors including maternal intelligence and the Home Observation for Measurement of the Environment score were used. RESULTS: WISC-IV scores were not significantly associated with prenatal or childhood total DAP metabolites. WISC verbal comprehension score was significantly higher in association with the highest maternal urinary concentrations of diethylphosphate metabolites (DE) (5.5; 95% CI: 0.8, 10.3 for \textgreater 13.2 nmol/L versus \textlessLOQ), while WISC working memory score was significantly lower in association with the highest urinary concentrations of DE metabolites at age 6 years (-3.6; 95% CI: -7.8, -0.6 for \textgreater 11.1 nmol/L versus \textlessLOD). CONCLUSION: This study found no evidence that prenatal OP exposure adversely affected cognitive function in 6-year-olds, perhaps because of the higher population's socioeconomic status than in previous studies though other causal and non-causal explanations are also possible. The negative association between WISC score and concurrent DE urinary concentrations requires replication by longitudinal studies investigating childhood OP exposur

    Metabolic effects in mice of cream processing: Direct ultra-high-temperature process lowers high-fat-induced adipose tissue inflammation

    No full text
    International audienceAlthough UHT heat treatment is being optimized to improve the stability and functional properties of dairy products, its metabolic effects remain scarcely known. As such, we studied the effect of the type of UHT process on lipid metabolism, intestinal barrier, and inflammation in mice. Nine-week-old male C57Bl/6J mice were fed a diet composed of nonlipidic powder mixed with different UHT dairy creams (final: 13% milkfat) for 1 or 4 wk. All creams contained 0.02% of thickener (carrageenan) and were treated via either (1) classical indirect heating process (Th), (2) indirect process at higher temperature (Th+), or (3) direct process by steam injection (ThD). Plasma, epididymal adipose tissue (EAT), and intestine were analyzed. Multivariate principal component analyses were used to identify differential effects of processes. Th+ differed by a globally higher liver damage score compared with that of the other creams. After 4 wk, the duodenal expression of lipid absorption genes fatty acid binding protein 4 (Fatp4) and microsomal triglycerides transfer protein (Mttp) was lower in the Th+ versus Th group. Expression in the colon of tight junction protein zonula occludens 1 (Zo-1) and of some endoplasmic reticulum stress markers was lower in both Th+ and ThD versus the Th group. In EAT, ThD had lower gene expression of several inflammatory markers after 4 wk. Some differential effects may be related to heat-induced physicochemical changes of creams. The type of cream UHT process differentially affected metabolic parameters in mice after a 4-wk fat-rich diet, partly due to cream structure. Altogether, direct steam injection process induced the lowest early markers of high-fat-induced metabolic inflammation in EAT

    Metabolic effects in mice of cream formulation: Addition of both thickener and emulsifier does not alter lipid metabolism but modulates mucus cells and intestinal endoplasmic reticulum stress

    No full text
    International audienceAdditives stabilize or improve the organoleptic or functional properties (or both) of many dairy products including whipping cream. Their influence on the metabolic effect of dairy cream is scarcely known. We tested the hypothesis that added emulsifier (lactic acid esters of mono- and diglycerides; MAG/DAG), thickener (carrageenan, CGN), or both, could modify the metabolic effect, notably in the intestine and liver. Nine-week-old male C57Bl/6J mice were fed UHT cream (indirect treatment) mixed with nonlipidic powder (final: 13% milkfat) for 1 or 4 wk. We compared creams (1) without additive (Ctl), (2) with thickener (Th), 0.02% of Îş-CGN, and (3) with both thickener and emulsifier, 0.1% of MAG/DAG esters (Th/Em). We analyzed plasma parameters, intestine, and liver. Fasting glycemia, insulinemia, triglyceridemia, nonesterified fatty acids, body weight gain, and liver weight did not differ among groups. After 1 wk, Th/Em had higher expression in the duodenum of some of the genes involved in (1) intestinal lipid absorption and (2) tight junction proteins versus Ctl and Th. After 4 wk, mucus cell number in the small intestine was higher in Th/Em versus Ctl and Th. Genes involved in endoplasmic reticulum (ER) stress in the duodenum were more expressed in Th/Em after 1 wk. After 4 wk, in the colon, a higher expression of ER stress genes was observed for Th versus Th/Em and Ctl. Liver damage score was not altered by additives. Adding both CGN (0.02%) and MAG/DAG esters (0.1%) in dairy cream did not result in deleterious outcomes in mice after 4 wk regarding lipid metabolism, intestinal permeability, and liver disorders. The longer term effect of intestinal ER stress modulation deserves further investigation

    Reactive oxygen species mediate sevoflurane- and desflurane-induced preconditioning in isolated human right atria in vitro

    No full text
    BACKGROUND: We examined the role of reactive oxygen species (ROS) in sevoflurane- and desflurane-induced preconditioning on isolated human right atrial myocardium. METHODS: We recorded isometric contraction of human right atrial trabeculae suspended in an oxygenated Tyrode's solution (34 degrees C, stimulation frequency 1 Hz). In all groups, a 30-min hypoxic period was followed by 60 min of reoxygenation. Ten minutes before hypoxia reoxygenation, muscles were exposed to 5 min of sevoflurane 2% or desflurane 6%. In separate groups, the sevoflurane 2% (Sevo + N-(2-mercaptopropionyl)-glycine [MPG]) or desflurane 6% (Des + MPG) was administered in the presence of 0.1 mM MPG, a ROS scavenger. The effect of 0.1 mM MPG alone was tested. Recovery of force after a 60-min reoxygenation period was compared between groups (mean +/- sd). RESULTS: Preconditioning with sevoflurane 2% (85% +/- 4% of baseline) or desflurane 6% (86% +/- 7% of baseline) enhanced the recovery of the force of myocardial contraction after 60 min reoxygenation compared with the control group (53% +/- 11% of baseline, P < 0.001). This effect was abolished in the presence of MPG (56% +/- 12% of baseline for Sevo + MPG, 48% +/- 13% of baseline for Des + MPG). The effect of MPG alone on the recovery of force was not different from the control group (57% +/- 7% of baseline versus 53% +/- 11%; P = NS). CONCLUSIONS: In vitro, sevoflurane and desflurane preconditioned human myocardium against hypoxia through a ROS-dependent mechanism

    Hepatitis B Virus Core Protein Domains Essential for Viral Capsid Assembly in a Cellular Context

    No full text
    International audienceHepatitis B virus (HBV) core protein (HBc) is essential to the formation of the HBV capsid. HBc contains two domains the N-terminal domain corresponding to residues 1-140 essential to form the icosahedral shell and the C-terminal domain corresponding to a basic and phosphorylated peptide, and required for DNA replication. The role of these two domains for HBV capsid assembly was essentially studied in vitro with HBc purified from mammalian or non-mammalian cell lysates, but their respective role in living cells remains to be clarified. We therefore investigated the assembly of the HBV capsid in Huh7 cells by combining fluorescence lifetime imaging microscopy/Förster's resonance energy transfer, fluorescence correlation spectroscopy and transmission electron microscopy approaches. We found that wild-type HBc forms oligomers early after transfection and at a sub-micromolar concentration. These oligomers are homogeneously diffused throughout the cell. We quantified a stoichiometry ranging from ~170 to ~230 HBc proteins per oligomer, consistent with the visualization of eGFP-containingHBV capsid shaped as native capsid particles by transmission electron microscopy. In contrast, no assembly was observed when HBc-N-terminal domain was expressed. This highlights the essential role of the C-terminal domain to form capsid in mammalian cells. Deletion of either the third helix or of the 124-135 residues of HBc had a dramatic impact on the assembly of the HBV capsid, inducing the formation of mis-assembled oligomers and monomers, respectively. This study shows that our approach using fluorescent derivatives of HBc is an innovative method to investigate HBV capsid formation

    Acute effects of milk polar lipids on intestinal tight junction expression: Towards an impact of sphingomyelin through the regulation of IL-8 secretion?

    No full text
    International audienceMilk polar lipids (MPL) are specifically rich in milk sphingomyelin (MSM) which represents 24% of MPL. Beneficial effects of MPL or MSM have been reported on lipid metabolism, but information on gut physiology is scarce. Here we assessed whether MPL and MSM can impact tight junction expression. Human epithelial intestinal Caco-2/TC7 cells were incubated with mixed lipid micelles devoid of MSM (Control) or with 0.2 or 0.4 mM of MSM via pure MSM or via total MPL. C57Bl/6 mice received 5 or 10 mg of MSM via MSM or via MPL (oral gavage); small intestinal segments were collected after 4 h. Impacts on tight junction and cytokine expressions were assessed by qPCR; IL-8 and IL-8 murine homologs (Cxcl1, Cxcl2) were analyzed. In vitro, MSM increased tight junction expression (Occludin, ZO-1) vs Control, unlike MPL. However, no differences were observed in permeability assays (FITC-dextran, Lucifer yellow). MSM increased the secretion and gene expression of IL-8 but not of other inflammatory cytokines. Moreover, cell incubation with IL-8 induced an overexpression of tight junction proteins. In mice, mRNA level of Cxcl1 and Cxcl2 in the ileum were increased after gavage with MSM vs NaCl but not with MPL. Altogether, these results suggest a specific action of MSM on intestinal tight junction expression, possibly mediated by IL-8. Our study provides clues to shed light on the beneficial effects of MPL on intestinal functions and supports the need for further mechanistic exploration of the direct vs indirect effects of MSM and IL-8 on the gut barrier

    Signaling pathways involved in postconditioning-induced cardioprotection of human myocardium, in vitro

    No full text
    We examined the respective role and relationship between protein kinase C (PKC), mitochondrial adenosine triphosphate-sensitive potassium (mitoK(ATP)) channel and p38 mitogen-activated protein kinase (MAPK) in postconditioning of human myocardium, in vitro. Isometrically contracting, isolated human right atrial trabeculae were exposed to 30 min hypoxia and 60 min reoxygenation. Phorbol 12-myristate 13-acetate (a PKC activator), diazoxide (a mitoK(ATP) opener) and anisomycin (a p38 MAPK activator) were superfused in early reoxygenation alone and with calphostin C (a PKC inhibitor), 5-hydroxy-decanoate (5-HD, a mitoK(ATP) channel inhibitor) and SB 202190 (a p38 MAPK inhibitor). Developed force at the end of the 60 min reoxygenation (FoC(60)) period was compared between groups (mean +/- SD). Phorbol 12-myristate 13-acetate (91 +/- 4% of baseline), diazoxide (85 +/- 5% of baseline) and anisomycin (90 +/- 4% of baseline) enhanced the FoC(60) as compared with the control group (53 +/- 7% of baseline, P < 0.0001). The enhanced FoC(60) induced by phorbol 12-myristate 13-acetate was abolished by calphostin C (52 +/- 5% of baseline) and 5-HD (56 +/- 3% of baseline), but not by SB 202190 (90 +/- 8%). The diazoxide-induced recovery of FoC(60) was attenuated by 5-HD (55 +/- 6% of baseline), but was not modified by calphostin C (87 +/- 5% of baseline) and SB 202190 (90 +/- 8% of baseline). The anisomycin-induced recovery of FoC(60) was abolished by calphostin C (61 +/- 9% of baseline) and SB 202190 (52 +/- 8% of baseline), but not by 5-HD (88 +/- 6% of baseline). In conclusion, PKC activation, opening of mitoK(ATP) channels and p38 MAPK activation in early reoxygenation induced the postconditioning of human myocardium, in vitro. Furthermore, PKC activation was upstream of the opening of mitoK(ATP) channels; p38 MAPK acted on PKC. Therefore, mitoK(ATP) and p38 MAPK seemed to be involved in two independent pathways
    corecore