503 research outputs found

    Optical SETI: A Spectroscopic Search for Laser Emission from Nearby Stars

    Get PDF
    We have searched for nonastrophysical emission lines in the optical spectra of 577 nearby F, G, K, and M main-sequence stars. Emission lines of astrophysical origin would also have been detected, such as from a time--variable chromosphere or infalling comets. We examined ~20 spectra per star obtained during four years with the Keck/HIRES spectrometer at a resolution of 5 km/s, with a detection threshold 3% of the continuum flux level. We searched each spectrum from 4000-5000 angstroms for emission lines having widths too narrow to be natural from the host star, as well as for lines broadened by astrophysical mechanisms. We would have detected lasers that emit a power, P>60 kW, for a typical beam width of ~0.01 arcsec (diffraction-limit from a 10-m aperture) if directed toward Earth from the star. No lines consisstent with laser emission were found.Comment: 27 pages, 11 figures, uses aastex.st

    Cosmology with the lights off: Standard sirens in the Einstein Telescope era

    Full text link
    We explore the prospects for constraining cosmology using gravitational-wave (GW) observations of neutron-star binaries by the proposed Einstein Telescope (ET), exploiting the narrowness of the neutron-star mass function. Double neutron-star (DNS) binaries are expected to be one of the first sources detected after "first-light" of Advanced LIGO and are expected to be detected at a rate of a few tens per year in the advanced era. However the proposed ET could catalog tens of thousands per year. Combining the measured source redshift distributions with GW-network distance determinations will permit not only the precision measurement of background cosmological parameters, but will provide an insight into the astrophysical properties of these DNS systems. Of particular interest will be to probe the distribution of delay times between DNS-binary creation and subsequent merger, as well as the evolution of the star-formation rate density within ET's detection horizon. Keeping H_0, \Omega_{m,0} and \Omega_{\Lambda,0} fixed and investigating the precision with which the dark-energy equation-of-state parameters could be recovered, we found that with 10^5 detected DNS binaries we could constrain these parameters to an accuracy similar to forecasted constraints from future CMB+BAO+SNIa measurements. Furthermore, modeling the merger delay-time distribution as a power-law, and the star-formation rate (SFR) density as a parametrized version of the Porciani and Madau SF2 model, we find that the associated astrophysical parameters are constrained to within ~ 10%. All parameter precisions scaled as 1/sqrt(N), where N is the number of cataloged detections. We also investigated how precisions varied with the intrinsic underlying properties of the Universe and with the distance reach of the network (which may be affected by the low-frequency cutoff of the detector).Comment: 24 pages, 11 figures, 6 tables. Minor changes to reflect published version. References updated and correcte

    On the origin of the distribution of binary-star periods

    Get PDF
    Pre-main sequence and main-sequence binary systems are observed to have periods, P, ranging from one day to 10^(10) days and eccentricities, e, ranging from 0 to 1. We pose the problem if stellar-dynamical interactions in very young and compact star clusters may broaden an initially narrow period distribution to the observed width. N-body computations of extremely compact clusters containing 100 and 1000 stars initially in equilibrium and in cold collapse are preformed. In all cases the assumed initial period distribution is uniform in the narrow range 4.5 < log10(P) < 5.5 (P in days) which straddles the maximum in the observed period distribution of late-type Galactic-field dwarf systems. None of the models lead to the necessary broadening of the period distribution, despite our adopted extreme conditions that favour binary--binary interactions. Stellar-dynamical interactions in embedded clusters thus cannot, under any circumstances, widen the period distribution sufficiently. The wide range of orbital periods of very young and old binary systems is therefore a result of cloud fragmentation and immediate subsequent magneto-hydrodynamical processes operating within the multiple proto-stellar system.Comment: 11 pages, 4 figures, ApJ, in pres

    High Orbital Eccentricities of Extrasolar Planets Induced by the Kozai Mechanism

    Get PDF
    One of the most remarkable properties of extrasolar planets is their high orbital eccentricities. Observations have shown that at least 20% of these planets, including some with particularly high eccentricities, are orbiting a component of a wide binary star system. The presence of a distant binary companion can cause significant secular perturbations to the orbit of a planet. In particular, at high relative inclinations, a planet can undergo a large-amplitude eccentricity oscillation. This so-called "Kozai mechanism" is effective at a very long range, and its amplitude is purely dependent on the relative orbital inclination. In this paper, we address the following simple question: assuming that every host star with a detected giant planet also has a (possibly unseen, e.g., substellar) distant companion, with reasonable distributions of orbital parameters and masses, how well could secular perturbations reproduce the observed eccentricity distribution of planets? Our calculations show that the Kozai mechanism consistently produces an excess of planets with very high (e >0.6) and very low (e < 0.1) eccentricities. The paucity of near-circular orbits in the observed sample cannot be explained solely by the Kozai mechanism, because, even with high enough inclinations, the Kozai mechanism often fails to produce significant eccentricity perturbations when there are other competing sources of orbital perturbations on secular timescales, such as general relativity. On the other hand, the Kozai mechanism can produce many highly eccentric orbits. Indeed the overproduction of high eccentricities observed in our models could be combined with plausible circularizing mechanisms (e.g., friction from residual gas) to create more intermediate eccentricities (e=0.1-0.6).Comment: 24 pages, 6 figures, ApJ, in press, minor changes to reflect the accepted versio

    A Possible Hidden Population of Spherical Planetary Nebulae

    Full text link
    We argue that relative to non-spherical planetary nebulae (PNs), spherical PNs are about an order of magnitude less likely to be detected, at distances of several kiloparsecs. Noting the structure similarity of halos around non-spherical PNs to that of observed spherical PNs, we assume that most unobserved spherical PNs are also similar in structure to the spherical halos around non-spherical PNs. The fraction of non-spherical PNs with detected spherical halos around them, taken from a recent study, leads us to the claim of a large (relative to that of non-spherical PNs) hidden population of spherical PNs in the visible band. Building a toy model for the luminosity evolution of PNs, we show that the claimed detection fraction of spherical PNs based on halos around non-spherical PNs, is compatible with observational sensitivities. We use this result to update earlier studies on the different PN shaping routes in the binary model. We estimate that ~30% of all PNs are spherical, namely, their progenitors did not interact with any binary companion. This fraction is to be compared with the ~3% fraction of observed spherical PNs among all observed PNs. From all PNs, ~15% owe their moderate elliptical shape to the interaction of their progenitors with planets, while \~55% of all PNs owe their elliptical or bipolar shapes to the interaction of their progenitors with stellar companions.Comment: AJ, in pres

    Effect of Binary Source Companions on the Microlensing Optical Depth Determination toward the Galactic Bulge Field

    Full text link
    Currently, gravitational microlensing survey experiments toward the Galactic bulge field utilize two different methods of minimizing blending effect for the accurate determination of the optical depth \tau. One is measuring \tau based on clump giant (CG) source stars and the other is using `Difference Image Analysis (DIA)' photometry to measure the unblended source flux variation. Despite the expectation that the two estimates should be the same assuming that blending is properly considered, the estimates based on CG stars systematically fall below the DIA results based on all events with source stars down to the detection limit. Prompted by the gap, we investigate the previously unconsidered effect of companion-associated events on τ\tau determination. Although the image of a companion is blended with that of its primary star and thus not resolved, the event associated with the companion can be detected if the companion flux is highly magnified. Therefore, companions work effectively as source stars to microlensing and thus neglect of them in the source star count could result in wrong \tau estimation. By carrying out simulations based on the assumption that companions follow the same luminosity function of primary stars, we estimate that the contribution of the companion-associated events to the total event rate is ~5f_{bi}% for current surveys and can reach up to ~6f_{bi}% for future surveys monitoring fainter stars, where f_{bi} is the binary frequency. Therefore, we conclude that the companion-associated events comprise a non-negligible fraction of all events. However, their contribution to the optical depth is not large enough to explain the systematic difference between the optical depth estimates based on the two different methods.Comment: 4 pages, 1 figure, 1 table, ApJ, submitte

    Modelling the evolution and nucleosynthesis of carbon-enhanced metal-poor stars

    Full text link
    We present the results of binary population simulations of carbon-enhanced metal-poor (CEMP) stars. We show that nitrogen and fluorine are useful tracers of the origin of CEMP stars, and conclude that the observed paucity of very nitrogen-rich stars puts strong constraints on possible modifications of the initial mass function at low metallicity. The large number fraction of CEMP stars may instead require much more efficient dredge-up from low-metallicity asymptotic giant branch stars.Comment: 6 pages, 1 figure, to appear in the proceedings of IAU Symposium 252 "The Art of Modelling Stars in the 21st Century", April 6-11, 2008, Sanya, Chin

    Eclipsing binary statistics - theory and observation

    Full text link
    The expected distributions of eclipse-depth versus period for eclipsing binaries of different luminosities are derived from large-scale population synthesis experiments. Using the rapid Hurley et al. BSE binary evolution code, we have evolved several hundred million binaries, starting from various simple input distributions of masses and orbit-sizes. Eclipse probabilities and predicted distributions over period and eclipse-depth (P/dm) are given in a number of main-sequence intervals, from O-stars to brown dwarfs. The comparison between theory and Hipparcos observations shows that a standard (Duquennoy & Mayor) input distribution of orbit-sizes (a) gives reasonable numbers and P/dm-distributions, as long as the mass-ratio distribution is also close to the observed flat ones. A random pairing model, where the primary and secondary are drawn independently from the same IMF, gives more than an order of magnitude too few eclipsing binaries on the upper main sequence. For a set of eclipsing OB-systems in the LMC, the observed period-distribution is different from the theoretical one, and the input orbit distributions and/or the evolutionary environment in LMC has to be different compared with the Galaxy. A natural application of these methods are estimates of the numbers and properties of eclipsing binaries observed by large-scale surveys like Gaia.Comment: 11 pages, 16 figures, accepted for publication in A&

    A discontinuity in the low-mass initial mass function

    Full text link
    The origin of brown dwarfs (BDs) is still an unsolved mystery. While the standard model describes the formation of BDs and stars in a similar way recent data on the multiplicity properties of stars and BDs show them to have different binary distribution functions. Here we show that proper treatment of these uncovers a discontinuity of the multiplicity-corrected mass distribution in the very-low-mass star (VLMS) and BD mass regime. A continuous IMF can be discarded with extremely high confidence. This suggests that VLMSs and BDs on the one hand, and stars on the other, are two correlated but disjoint populations with different dynamical histories. The analysis presented here suggests that about one BD forms per five stars and that the BD-star binary fraction is about 2%-3% among stellar systems.Comment: 14 pages, 11 figures, uses emulateapj.cls. Minor corrections and 1 reference added after being accepted by the Ap

    Planetary Companions Around Two Solar Type Stars: HD 195019 and HD 217107

    Full text link
    We have enlarged the sample of stars in the planet search at Lick Observatory. Doppler measurements of 82 new stars observed at Lick Observatory, with additional velocities from Keck Observatory, have revealed two new planet candidates. The G3V/IV star, HD 195019, exhibits Keplerian velocity variations with a period of 18.27 d, an orbital eccentricity of 0.03 +/- 0.03, and M sin i = 3.51 M_Jup. Based on a measurement of Ca II H&K emission, this star is chromospherically inactive. We estimate the metallicity of HD 195019 to be approximately solar from ubvy photometry. The second planet candidate was detected around HD 217107, a G7V star. This star exhibits a 7.12 d Keplerian period with eccentricity 0.14 +/- 0.05 and M sin i = 1.27 M_Jup. HD 217107 is also chromospherically inactive. The photometric metallicity is found to be [Fe/H] = +0.29 +/- 0.1 dex. Given the relatively short orbital period, the absence of tidal spin-up of HD 217107 provides a theoretical constraint on the upper limit of the companion mass of < 11 M_Jup.Comment: 15 pages, plus 6 figures. To appear in Jan 1999 PAS
    corecore