2,463 research outputs found

    Superconductivity of Quasi-One-Dimensional Electrons in Strong Magnetic Field

    Full text link
    The superconductivity of quasi-one-dimensional electrons in the magnetic field is studied. The system is described as the one-dimensional electrons with no frustration due to the magnetic field. The interaction is assumed to be attractive between electrons in the nearest chains, which corresponds to the lines of nodes of the energy gap in the absence of the magnetic field. The effective interaction depends on the magnetic field and the transverse momentum. As the magnetic field becomes strong, the transition temperature of the spin-triplet superconductivity oscillates, while that of the spin-singlet increases monotonically.Comment: 15 pages, RevTeX, 3 PostScript figures in uuencoded compressed tar file are appende

    Rapid changes in shape and number of MHC class II expressing cells in rat airways after Mycoplasma pulmonis infection

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Mycoplasma pulmonis infection in rodents causes a chronic inflammatory airway disease with a strong immunological component, leading to mucosal remodeling and angiogenesis. We sought to determine the effect of this infection on the shape and number of dendritic cells and other major histocompatibility complex (MHC) class II expressing cells in the airway mucosa of Wistar rats. Changes in the shape of subepithelial OX6 (anti-MHC class II)-immunoreactive cells were evident in the tracheal mucosa 2 days after intranasal inoculation with M. pulmonis. By 1 week, the shape of the cells had changed from stellate to rounded (mean shape index increased from 0.42 to 0.77). The number of OX6-positive cells was increased 6-fold at 1 week and 16-fold at 4 weeks. Coincident with these changes, many columnar epithelial cells developed OX6 immunoreactivity, which was still present at 4 weeks. We conclude that M. pulmonis infection creates a potent immunologic stimulus that augments and transforms the OX6-immunoreactive cell population in the airways by changing the functional state of airway dendritic cells, initiating an influx of MHC class II expressing cells, and activating expression of MHC class II molecules by airway epithelial cells

    Field induced anisotropic cooperativity in a magnetic colloidal glass

    Full text link
    The translational dynamics in a repulsive colloidal glass-former is probed by time-resolved X-ray Photon Correlation Spectroscopy. In this dense dispersion of charge-stabilized and magnetic nanoparticles, the interaction potential can be tuned, from quasi-isotropic to anisotropic by applying an external magnetic field. Structural and dynamical anisotropies are reported on interparticle lengthscales associated with highly anisotropic cooperativity, almost two orders of magnitude larger in the field direction than in the perpendicular direction and in zero field

    Quantum Fully Homomorphic Encryption With Verification

    Get PDF
    Fully-homomorphic encryption (FHE) enables computation on encrypted data while maintaining secrecy. Recent research has shown that such schemes exist even for quantum computation. Given the numerous applications of classical FHE (zero-knowledge proofs, secure two-party computation, obfuscation, etc.) it is reasonable to hope that quantum FHE (or QFHE) will lead to many new results in the quantum setting. However, a crucial ingredient in almost all applications of FHE is circuit verification. Classically, verification is performed by checking a transcript of the homomorphic computation. Quantumly, this strategy is impossible due to no-cloning. This leads to an important open question: can quantum computations be delegated and verified in a non-interactive manner? In this work, we answer this question in the affirmative, by constructing a scheme for QFHE with verification (vQFHE). Our scheme provides authenticated encryption, and enables arbitrary polynomial-time quantum computations without the need of interaction between client and server. Verification is almost entirely classical; for computations that start and end with classical states, it is completely classical. As a first application, we show how to construct quantum one-time programs from classical one-time programs and vQFHE.Comment: 30 page

    Observation of superspin glass state in magnetically textured ferrofluid (gamma-Fe2O3)

    Get PDF
    Magnetic properties in a magnetically textured ferrofluid made out of interacting maghemite (gamma-Fe2O3) nanoparticles suspended in glycerin have been investigated. Despite the loss of uniform distribution of anisotropy axes, a superspin glass state exists at low temperature in a concentrated, textured ferrofluid as in the case of its non-textured counterpart. The onset of superspin glass state was verified from the sample's AC susceptibility. The influence of the anisotropy axis orientation on the aging behavior in the glassy states is also discussed

    Interaction between a rough bed and an adjacent smooth bed in open-channel flow

    Get PDF
    Experiments are conducted in an open-channel flow where half of the section is smooth and the other half consists of an array of cubes, which are either submerged or emergent. A shear layer featuring large-scale Kelvin–Helmholtz structures develops between the two subsections. The flows are first analysed in the framework of the double-averaging method (averaging of the flow both in time and space). Double averaging could be performed thanks to an experimental set-up (three-dimensional, two-component telecentric scanning particle image velocimetry) that allows to measure the velocity field in a large volume, including the interstices between the cubes. A momentum balance performed on the smooth subsection indicates that the loss of momentum towards the rough subsection has the same order of magnitude than the momentum loss through bed friction. This lateral momentum flux occurs nearly exclusively through turbulent shear stress, whereas secondary currents plays a minor role and dispersive shear stress is negligible. A pattern recognition technique is then applied to investigate statistically the large-scale Kelvin–Helmholtz structures that develop in the shear layer. The structures appear to be coherent over the water depth and to be strongly inclined in the vertical, the top part being ahead. The educed coherent structure is responsible by itself for the shape of the velocity profile across the shear layer and for a large part of the turbulence (up to 60 % for the turbulent shear stress). Finally, a coupling is identified between the passage of the Kelvin–Helmholtz structures and the instantaneous wake flow around the cubes at the interface

    Superconductivity of Quasi-One and Quasi-Two Dimensional Tight-Binding Electrons in Magnetic Field

    Full text link
    The upper critical field Hc2(T)H_{c2}(T) of the tight-binding electrons in the three-dimensional lattice is investigated. The electrons make Cooper pairs between the eigenstates with the same energy in the strong magnetic field. The transition lines in the quasi-one dimensional case are shown to deviate from the previously obtained results where the hopping matrix elements along the magnetic field are neglected. In the absence of the Pauli pair breaking the transition temperature Tc(H)T_c(H) of the quasi-two dimensional electrons is obtained to oscillationally increase as the magnetic field becomes large and reaches to Tc(0)T_c(0) in the strong field as in the quasi-one dimensional case.Comment: 4pages,4figures,to be published in J.Phys.Soc.Jp

    Infrared behavior of interacting bosons at zero temperature

    Full text link
    We review the infrared behavior of interacting bosons at zero temperature. After a brief discussion of the Bogoliubov approximation and the breakdown of perturbation theory due to infrared divergences, we present two approaches that are free of infrared divergences -- Popov's hydrodynamic theory and the non-perturbative renormalization group -- and allow us to obtain the exact infrared behavior of the correlation functions. We also point out the connection between the infrared behavior in the superfluid phase and the critical behavior at the superfluid--Mott-insulator transition in the Bose-Hubbard model.Comment: 8 pages, 4 figures. Proceedings of the 19th International Laser Physics Workshop, LPHYS'10 (Foz do Iguacu, Brazil, July 5-9, 2010
    • …
    corecore