278 research outputs found

    On the seismic modelling of rotating B-type pulsators in the traditional approximation

    Get PDF
    The CoRoT and Kepler data revolutionised our view on stellar pulsation. For massive stars, the space data revealed the simultaneous presence of low-amplitude low-order modes and dominant high-order gravity modes in several B-type pulsators. The interpretation of such a rich set of detected oscillations requires new tools. We present computations of oscillations for B-type pulsators taking into account the effects of the Coriolis force in the so-called traditional approximation. We discuss the limitations of classical frequency matching to tune these stars seismically and show that the predictive power is limited in the case of high-order gravity mode pulsators, except if numerous modes of consecutive radial order can be identified.Comment: 8 pages, 4 figures. Paper submitted for publication in the Proceedings of the 61st Fujihara Seminar: Progress in solar/stellar physics with helio- and asteroseismology to appear in ASP Conference Serie

    Nonradial nonadiabatic stellar pulsations: A numerical method and its application to a beta Cephei model

    Full text link
    A new general method for the computation of nonradial nonadiabatic oscillations of a given stellar model is presented for a linear approximation. A simple and useful modelling of the atmosphere is included, allowing to obtain credible values for the eigenfunctions in the atmosphere. Some of the results obtained for a 10 M[SUB]sun[/SUB] model are shown as an illustration. Our study opens the way to different applications. Better theoretical line-profile variations could be obtained from our method, allowing a more detailed comparison with observations. More generally, our study is relevant for asteroseismology, giving a way for a better knowledge of stellar interiors.Peer reviewe

    Asteroseismic inversions in the Kepler era: application to the Kepler Legacy sample

    Full text link
    In the past few years, the CoRoT and Kepler missions have carried out what is now called the space photometry revolution. This revolution is still ongoing thanks to K2 and will be continued by the Tess and Plato2.0 missions. However, the photometry revolution must also be followed by progress in stellar modelling, in order to lead to more precise and accurate determinations of fundamental stellar parameters such as masses, radii and ages. In this context, the long-lasting problems related to mixing processes in stellar interior is the main obstacle to further improvements of stellar modelling. In this contribution, we will apply structural asteroseismic inversion techniques to targets from the Kepler Legacy sample and analyse how these can help us constrain the fundamental parameters and mixing processes in these stars. Our approach is based on previous studies using the SOLA inversion technique to determine integrated quantities such as the mean density, the acoustic radius, and core conditions indicators, and has already been successfully applied to the 16Cyg binary system. We will show how this technique can be applied to the Kepler Legacy sample and how new indicators can help us to further constrain the chemical composition profiles of stars as well as provide stringent constraints on stellar ages.Comment: To appear in the proceedings of the Kasc 9 Tasc 2 worksho

    Revised instability domains of SPB and beta Cephei stars

    Full text link
    The excitation of pulsation modes in beta Cephei and Slowly Pulsating B stars is known to be very sensitive to opacity changes in the stellar interior where T~2 10^5 K. In this region differences in opacity up to ~50% can be induced by the choice between OPAL and OP opacity tables, and between two different metal mixtures (Grevesse and Noels 1993 and Asplund et al. 2005). We have extended the non-adiabatic computations presented in Miglio et al. (2007) towards models of higher mass and pulsation modes of degree l=3, and we present here the instability domains in the HR- and log(P)-log(Teff) diagrams resulting from different choices of opacity tables, and for three different metallicities.Comment: 9 pages, 4 figures. Accepted for publication in Communications in Asteroseismolog

    Mode identification in rapidly rotating stars from BRITE data

    Full text link
    Apart from recent progress in Gamma Dor stars, identifying modes in rapidly rotating stars is a formidable challenge due to the lack of simple, easily identifiable frequency patterns. As a result, it is necessary to look to observational methods for identifying modes. Two popular techniques are spectroscopic mode identification based on line profile variations (LPVs) and photometric mode identification based on amplitude ratios and phase differences between multiple photometric bands. In this respect, the BRITE constellation is particularly interesting as it provides space-based multi-colour photometry. The present contribution describes the latest developments in obtaining theoretical predictions for amplitude ratios and phase differences for pulsation modes in rapidly rotating stars. These developments are based on full 2D non-adiabatic pulsation calculations, using models from the ESTER code, the only code to treat in a self-consistent way the thermal equilibrium of rapidly rotating stars. These predictions are then specifically applied to the BRITE photometric bands to explore the prospects of identifying modes based on BRITE observations.Comment: 8 pages, 3 figures, proceedings of the 3rd BRITE Science Worksho

    Non-adiabatic pulsations in ESTER models

    Full text link
    One of the greatest challenges in interpreting the pulsations of rapidly rotating stars is mode identification, i.e. correctly matching theoretical modes to observed pulsation frequencies. Indeed, the latest observations as well as current theoretical results show the complexity of pulsation spectra in such stars, and the lack of easily recognisable patterns. In the present contribution, the latest results on non-adiabatic effects in such pulsations are described, and we show how these come into play when identifying modes. These calculations fully take into account the effects of rapid rotation, including centrifugal distortion, and are based on models from the ESTER project, currently the only rapidly rotating models in which the energy conservation equation is satisfied, a prerequisite for calculating non-adiabatic effects. Non-adiabatic effects determine which modes are excited and play a key role in the near-surface pulsation-induced temperature variations which intervene in multi-colour amplitude ratios and phase differences, as well as line profile variations.Comment: Proceedings for the Joint TASC2 & KASC9 Workshop, Terceira, Azores, 201

    Impact of helium diffusion and helium-flash-induced carbon production on gravity-mode pulsations in subdwarf B stars

    Get PDF
    Realistic stellar models are essential to the forward modelling approach in asteroseismology. For practicality however, certain model assumptions are also required. For example, in the case of subdwarf B stars, one usually starts with zero-age horizontal branch structures without following the progenitor evolution. We analyse the effects of common assumptions in subdwarf B models on the g-mode pulsational properties. We investigate if and how the pulsation periods are affected by the H-profile in the core-envelope transition zone. Furthermore, the effects of C-production and convective mixing during the core helium flash are evaluated. Finally, we reanalyse the effects of stellar opacities on the mode excitation in subdwarf B stars. We find that helium settling causes a shift in the theoretical blue edge of the g-mode instability domain to higher effective temperatures. This results in a closer match to the observed instability strip of long-period sdB pulsators, particularly for l<=3 modes. We show further that the g-mode spectrum is extremely sensitive to the H-profile in the core-envelope transition zone. If atomic diffusion is efficient, details of the initial shape of the profile become less important in the course of evolution. Diffusion broadens the chemical gradients, and results in less effective mode trapping and different pulsation periods. Furthermore, we report on the possible consequences of the He-flash for the g-modes. The outer edge of a flash-induced convective region introduces an additional chemical transition in the stellar models, and the corresponding spike in the Brunt-Vaisala frequency produces a complicated mode trapping signature in the period spacings.Comment: 9 pages, 6 figures, 1 table, accepted for publication in A&

    Ledoux's convection criterion in evolution and asteroseismology of massive stars

    Full text link
    Saio et al. (2006) have shown that the presence of an intermediate convective zone (ICZ) in post-main sequence models could prevent the propagation of g-modes in the radiative interior and hence avoid the corresponding radiative damping. The development of such a convective region highly depends on the structure of the star in the mu-gradient region surrounding the convective core during the main sequence phase. In particular,the development of this ICZ depends on physical processes such as mass loss, overshooting (Chiosi & Maeder 1986, Chiosi et al. 1992, see also Godart et al., these proceedings) and convective instability criterion (Schwarzschild's or Ledoux's criteria). In this paper we study the consequences of adopting the Ledoux's criterion on the evolution of the convective regions in massive stars (15 and 20 Msun), and on the pulsation spectrum of these new B-type variables (also called SPBsg).Comment: Contribution to the Proceedings of the 38th LIAC/HELAS-ESTA/BAG, 2008 Accepted for publication in CoAs

    Study with WhoSGlAd of the acoustic depth of the helium glitch across the seismic HR diagram and its impact on the inferred helium abundance

    Get PDF
    The acoustic glitches' signature present in solar-like stars holds invaluable information. Indeed, it is caused by a sharp variation in the sound speed, therefore carrying localised information. One such glitch is the helium glitch caused by the hydrogen and first and second partial helium ionisation region, allowing us to constrain the surface helium abundance. However, the function adjusted to the glitch signature depends non-linearly on the acoustic depth at which it occurs, He. Retrieving the faint glitch signature and estimating τHe\tau_{\textrm{He}} are difficult but crucial tasks to accurately measure the glitch parameters and, ultimately, accurately infer the helium abundance. In the present paper, we aim at providing a way to estimate τHe\tau_{\textrm{He}} using precise seismic indicators, independent of stellar modelling. Consequently, we aim at improving the WhoSGlAd (Whole Spectrum and Glitches Adjustment) method by automatically providing a model independent measure of the glitch's parameters. We compute the evolution of THeT_{\textrm{He}}, a dimensionless form of the acoustic depth, along a grid of models and adjust an empirical linear relation between THeT_{\textrm{He}} and the mean large separation and frequency ratio as defined in WhoSGlAd. We further optimise over the value of this estimate to ensure the stability and accuracy of the approach. The proposed approach provides an excellent estimate of the acoustic depth and allows us to swiftly retrieve the glitch signature of observed spectra. We demonstrate that the we can accurately model the helium abundance of four Kepler targets by comparing model (both versions of WhoSGlAd) and literature values.Comment: 9 pages, accepted for publication in MNRAS on the 14/03/202
    corecore