12 research outputs found

    Phenomenological models of Cosmic Ray transport in Galaxies

    Full text link
    When examining the abundance of elements in the placid interstellar medium, a deep hollow between helium and carbon becomes apparent. Notably, the fragile light nuclei Lithium, Beryllium, and Boron (collectively known as LiBeB) are not formed, with the exception of Li7, during the process of Big Bang nucleosynthesis, nor do they arise as byproducts of stellar lifecycles. In contrast to the majority of elements, these species owe their existence to the most energetic particles in the Universe. Cosmic rays, originating in the most powerful Milky Way's particle accelerators, reach the Earth after traversing tangled and lengthy paths spanning millions of years. During their journey, these primary particles undergo transformations through collisions with interstellar matter. This process, known as spallation, alters their composition and introduces secondary light elements in the cosmic-ray beam. In light of this, the relatively large abundance of LiBeB in the cosmic radiation provides remarkable insights into the mechanisms of particle acceleration, as well as the micro-physics of confinement within galactic magnetic fields. These lecture notes are intended to equip readers with basic knowledge necessary for examining the chemical and isotopic composition, as well as the energy spectra, of cosmic rays, finally fostering a more profound comprehension of the complex high-energy astrophysical processes occurring within our Galaxy.Comment: 56 pages (including 4 appendices), 15 figures. To appear in "Foundations of Cosmic Ray Astrophysics", Proceedings of the International School of Physics "Enrico Fermi", Course 208, Varenna, 24-29 June 2022, edited by F. Aharonian, E. Amato, and P. Blas

    Perspectives for multi-messenger astronomy with the next generation of gravitational-wave detectors and high-energy satellites

    Full text link
    The Einstein Telescope (ET) is going to bring a revolution for the future of multi-messenger astrophysics. In order to detect the counterparts of binary neutron star (BNS) mergers at high redshift, the high-energy observations will play a crucial role. Here, we explore the perspectives of ET, as single observatory and in a network of gravitational-wave (GW) detectors, operating in synergy with future γ\gamma-ray and X-ray satellites. We predict the high-energy emission of BNS mergers and its detectability in a theoretical framework which is able to reproduce the properties of the current sample of observed short GRBs (SGRB). We estimate the joint GW and high-energy detection rate for both the prompt and afterglow emissions, testing several combinations of instruments and observational strategies. We find that the vast majority of SGRBs detected in γ\gamma-rays will have a detectable GW counterpart; the joint detection efficiency approaches 100%100\% considering a network of third generation GW observatories. The probability of identifying the electromagnetic counterpart of BNS mergers is significantly enhanced if the sky localisation provided by GW instruments is observed by wide field X-ray monitors. We emphasize that the role of the future X-ray observatories will be very crucial for the detection of the fainter emission outside the jet core, which will allow us to probe the yet unexplored population of low-luminosity SGRBs in the nearby Universe, as well as to unveil the nature of the jet structure and the connections with the progenitor properties.Comment: Submitted to the journa

    Detecting VHE prompt emission from binary neutron-star mergers: ET and CTA synergies

    Full text link
    The current generation of very-high-energy gammagamma-ray (VHE; E above 30 GeV) detectors (MAGIC and H.E.S.S.) have recently demonstrated the ability to detect the afterglow emission of GRBs. However, the GRB prompt emission, typically observed in the 10 keV-10 MeV band, has so far remained undetected at higher energies. Here, we investigate the perspectives of multi-messenger observations to detect the prompt emission of short GRBs in VHE. Considering binary neutron star mergers as progenitors of short GRBs, we evaluate the joint detection efficiency of the Cherenkov Telescope Array (CTA) observing in synergy with the third generation of gravitational wave detectors, such as the Einstein Telescope (ET) and Cosmic Explorer (CE). In particular, we evaluate the expected capabilities to detect and localize gravitational wave events in the inspiral phase and to provide an early warning alert able to drive the VHE search. We compute the amount of possible joint detections by considering several observational strategies, and demonstrate that the sensitivities of CTA make the detection of the VHE emission possible even if it is several orders fainter than the one observed at 10 keV-10 MeV. We discuss the results in terms of possible scenarios of production of VHE photons from binary neutron star mergers by considering GRB prompt and afterglow emissions

    Measuring properties of primordial black hole mergers at cosmological distances: effect of higher order modes in gravitational waves

    Get PDF
    Primordial black holes (PBHs) may form from the collapse of matter overdensities shortly after the Big Bang. One may identify their existence by observing gravitational wave (GW) emissions from merging PBH binaries at high redshifts z30z\gtrsim 30, where astrophysical binary black holes (BBHs) are unlikely to merge. The next-generation ground-based GW detectors, Cosmic Explorer and Einstein Telescope, will be able to observe BBHs with total masses of O(10100) M\mathcal{O}(10-100)~M_{\odot} at such redshifts. This paper serves as a companion paper of arXiv:2108.07276, focusing on the effect of higher-order modes (HoMs) in the waveform modeling, which may be detectable for these high redshift BBHs, on the estimation of source parameters. We perform Bayesian parameter estimation to obtain the measurement uncertainties with and without HoM modeling in the waveform for sources with different total masses, mass ratios, orbital inclinations and redshifts observed by a network of next-generation GW detectors. We show that including HoMs in the waveform model reduces the uncertainties of redshifts and masses by up to a factor of two, depending on the exact source parameters. We then discuss the implications for identifying PBHs with the improved single-event measurements, and expand the investigation of the model dependence of the relative abundance between the BBH mergers originating from the first stars and the primordial BBH mergers as shown in arXiv:2108.07276.Comment: 11 pages, 11 figure

    On the single-event-based identification of primordial black hole mergers at cosmological distances

    Get PDF
    The existence of primordial black holes (PBHs), which may form from the collapse of matter overdensities shortly after the Big Bang, is still under debate. Among the potential signatures of PBHs are gravitational waves (GWs) emitted from binary black hole (BBH) mergers at redshifts z ≳ 30, where the formation of astrophysical black holes is unlikely. Future ground-based GW detectors, the Cosmic Explorer and Einstein Telescope, will be able to observe equal-mass BBH mergers with total mass of (10–100)M⊙ at such distances. In this work, we investigate whether the redshift measurement of a single BBH source can be precise enough to establish its primordial origin. We simulate BBHs of different masses, mass ratios and orbital orientations. We show that for BBHs with total masses between 20 M ⊙ and 40 M ⊙ merging at z ≥ 40, one can infer z > 30 at up to 97% credibility, with a network of one Einstein Telescope, one 40 km Cosmic Explorer in the US, and one 20 km Cosmic Explorer in Australia. This number reduces to 94% with a smaller network made of one Einstein Telescope and one 40 km Cosmic Explorer in the US. We also analyze how the measurement depends on the Bayesian priors used in the analysis and verify that priors that strongly favor the wrong model yield smaller Bayesian evidences

    Science with the Einstein Telescope: a comparison of different designs

    Get PDF
    The Einstein Telescope (ET), the European project for a third-generation gravitational-wave detector, has a reference configuration based on a triangular shape consisting of three nested detectors with 10 km arms, where in each arm there is a `xylophone' configuration made of an interferometer tuned toward high frequencies, and an interferometer tuned toward low frequencies and working at cryogenic temperature. Here, we examine the scientific perspectives under possible variations of this reference design. We perform a detailed evaluation of the science case for a single triangular geometry observatory, and we compare it with the results obtained for a network of two L-shaped detectors (either parallel or misaligned) located in Europe, considering different choices of arm-length for both the triangle and the 2L geometries. We also study how the science output changes in the absence of the low-frequency instrument, both for the triangle and the 2L configurations. We examine a broad class of simple `metrics' that quantify the science output, related to compact binary coalescences, multi-messenger astronomy and stochastic backgrounds, and we then examine the impact of different detector designs on a more specific set of scientific objectives.Comment: 197 pages, 72 figure

    The Wide-field Spectroscopic Telescope (WST) Science White Paper

    No full text
    The Wide-field Spectroscopic Telescope (WST) is proposed as a new facility dedicated to the efficient delivery of spectroscopic surveys. This white paper summarises the initial concept as well as the corresponding science cases. WST will feature simultaneous operation of a large field-of-view (3 sq. degree), a high multiplex (20,000) multi-object spectrograph (MOS) and a giant 3x3 sq. arcmin integral field spectrograph (IFS). In scientific capability these requirements place WST far ahead of existing and planned facilities. Given the current investment in deep imaging surveys and noting the diagnostic power of spectroscopy, WST will fill a crucial gap in astronomical capability and work synergistically with future ground and space-based facilities. This white paper shows that WST can address outstanding scientific questions in the areas of cosmology; galaxy assembly, evolution, and enrichment, including our own Milky Way; origin of stars and planets; time domain and multi-messenger astrophysics. WST's uniquely rich dataset will deliver unforeseen discoveries in many of these areas. The WST Science Team (already including more than 500 scientists worldwide) is open to the all astronomical community. To register in the WST Science Team please visit https://www.wstelescope.com/for-scientists/participat

    The Wide-field Spectroscopic Telescope (WST) Science White Paper

    No full text
    The Wide-field Spectroscopic Telescope (WST) is proposed as a new facility dedicated to the efficient delivery of spectroscopic surveys. This white paper summarises the initial concept as well as the corresponding science cases. WST will feature simultaneous operation of a large field-of-view (3 sq. degree), a high multiplex (20,000) multi-object spectrograph (MOS) and a giant 3x3 sq. arcmin integral field spectrograph (IFS). In scientific capability these requirements place WST far ahead of existing and planned facilities. Given the current investment in deep imaging surveys and noting the diagnostic power of spectroscopy, WST will fill a crucial gap in astronomical capability and work synergistically with future ground and space-based facilities. This white paper shows that WST can address outstanding scientific questions in the areas of cosmology; galaxy assembly, evolution, and enrichment, including our own Milky Way; origin of stars and planets; time domain and multi-messenger astrophysics. WST's uniquely rich dataset will deliver unforeseen discoveries in many of these areas. The WST Science Team (already including more than 500 scientists worldwide) is open to the all astronomical community. To register in the WST Science Team please visit https://www.wstelescope.com/for-scientists/participat

    The Wide-field Spectroscopic Telescope (WST) Science White Paper

    No full text
    The Wide-field Spectroscopic Telescope (WST) is proposed as a new facility dedicated to the efficient delivery of spectroscopic surveys. This white paper summarises the initial concept as well as the corresponding science cases. WST will feature simultaneous operation of a large field-of-view (3 sq. degree), a high multiplex (20,000) multi-object spectrograph (MOS) and a giant 3x3 sq. arcmin integral field spectrograph (IFS). In scientific capability these requirements place WST far ahead of existing and planned facilities. Given the current investment in deep imaging surveys and noting the diagnostic power of spectroscopy, WST will fill a crucial gap in astronomical capability and work synergistically with future ground and space-based facilities. This white paper shows that WST can address outstanding scientific questions in the areas of cosmology; galaxy assembly, evolution, and enrichment, including our own Milky Way; origin of stars and planets; time domain and multi-messenger astrophysics. WST's uniquely rich dataset will deliver unforeseen discoveries in many of these areas. The WST Science Team (already including more than 500 scientists worldwide) is open to the all astronomical community. To register in the WST Science Team please visit https://www.wstelescope.com/for-scientists/participat

    The Wide-field Spectroscopic Telescope (WST) Science White Paper

    No full text
    The Wide-field Spectroscopic Telescope (WST) is proposed as a new facility dedicated to the efficient delivery of spectroscopic surveys. This white paper summarises the initial concept as well as the corresponding science cases. WST will feature simultaneous operation of a large field-of-view (3 sq. degree), a high multiplex (20,000) multi-object spectrograph (MOS) and a giant 3x3 sq. arcmin integral field spectrograph (IFS). In scientific capability these requirements place WST far ahead of existing and planned facilities. Given the current investment in deep imaging surveys and noting the diagnostic power of spectroscopy, WST will fill a crucial gap in astronomical capability and work synergistically with future ground and space-based facilities. This white paper shows that WST can address outstanding scientific questions in the areas of cosmology; galaxy assembly, evolution, and enrichment, including our own Milky Way; origin of stars and planets; time domain and multi-messenger astrophysics. WST's uniquely rich dataset will deliver unforeseen discoveries in many of these areas. The WST Science Team (already including more than 500 scientists worldwide) is open to the all astronomical community. To register in the WST Science Team please visit https://www.wstelescope.com/for-scientists/participat
    corecore