59 research outputs found

    Functional Morphometric Analysis of the Furcula in Mesozoic Birds

    Get PDF
    The furcula displays enormous morphological and structural diversity. Acting as an important origin for flight muscles involved in the downstroke, the form of this element has been shown to vary with flight mode. This study seeks to clarify the strength of this form-function relationship through the use of eigenshape morphometric analysis coupled with recently developed phylogenetic comparative methods (PCMs), including phylogenetic Flexible Discriminant Analysis (pFDA). Additionally, the morphospace derived from the furculae of extant birds is used to shed light on possible flight adaptations of Mesozoic fossil taxa. While broad conclusions of earlier work are supported (U-shaped furculae are associated with soaring, strong anteroposterior curvature with wing-propelled diving), correlations between form and function do not appear to be so clear-cut, likely due to the significantly larger dataset and wider spectrum of flight modes sampled here. Interclavicular angle is an even more powerful discriminator of flight mode than curvature, and is positively correlated with body size. With the exception of the close relatives of modern birds, the ornithuromorphs, Mesozoic taxa tend to occupy unique regions of morphospace, and thus may have either evolved unfamiliar flight styles or have arrived at similar styles through divergent musculoskeletal configurations

    A gigantic bird from the Upper Cretaceous of Central Asia

    No full text
    We describe an enormous Late Cretaceous fossil bird from Kazakhstan, known from a pair of edentulous mandibular rami (greater than 275 mm long), which adds significantly to our knowledge of Mesozoic avian morphological and ecological diversity. A suite of autapomorphies lead us to recognize the specimen as a new taxon. Phylogenetic analysis resolves this giant bird deep within Aves as a basal member of Ornithuromorpha. This Kazakh fossil demonstrates that large body size evolved at least once outside modern birds (Neornithes) and reveals hitherto unexpected trophic diversity within Cretaceous Aves

    Ab initio calculations on low-lying electronic states of SnCl2- and Franck-Condon simulation of its photodetachment spectrum

    No full text
    Geometry optimization and harmonic vibrational frequency calculations have been carried out on low-lying doublet and quartet electronic states of stannous (tin(II)) dichloride anion (SnCl2-) employing the CASSCF and RCCSD(T) methods. The small-core fully-relativistic effective core potential, ECP28MDF, was used for Sn in these calculations, together with valence basis sets of up to augmented correlation-consistent polarized-valence quintuple-zeta (aug-cc-pV5Z) quality. The ground electronic state of SnCl2- is determined to be the 2B1 state, with the Ã2B2 and ã4-g state, calculated to be ca. 1.50 and 2.72 eV higher in energy respectively. The electron affinities of the 1A1 and ã3B1 states of SnCl2 have been computed to be 1.568 ± 0.007 and 4.458 ± 0.002 eV respectively, including contributions of core correlation and extrapolation to the complete basis set limit. The SnCl2 (1A1) + e SnCl2- (2B1) and SnCl2 (ã3B1) + e SnCl2- (2B1) photodetachment bands have been simulated with computed Franck–Condon factors, which include an allowance for anharmonicity and Duschinsky rotation
    corecore