23,428 research outputs found
Aquatic macroinvertebrate responses to native and non-native predators
Non-native species can profoundly affect native ecosystems through trophic interactions with native species. Native prey may respond differently to non-native versus native predators since they lack prior experience. Here we investigate antipredator responses of two common freshwater macroinvertebrates, Gammarus pulex and Potamopyrgus jenkinsi, to olfactory cues from three predators; sympatric native fish (Gasterosteus aculeatus), sympatric native crayfish (Austropotamobius pallipes), and novel invasive crayfish (Pacifastacus leniusculus). G. pulex responded differently to fish and crayfish; showing enhanced locomotion in response to fish, but a preference for the dark over the light in response to the crayfish. P. jenkinsi showed increased vertical migration in response to all three predator cues relative to controls. These different responses to fish and crayfish are hypothesised to reflect the predators’ differing predation types; benthic for crayfish and pelagic for fish. However, we found no difference in response to native versus invasive crayfish, indicating that prey naiveté is unlikely to drive the impacts of invasive crayfish. The Predator Recognition Continuum Hypothesis proposes that benefits of generalisable predator recognition outweigh costs when predators are diverse. Generalised responses of prey as observed here will be adaptive in the presence of an invader, and may reduce novel predators’ potential impacts
On the Use of Group Theoretical and Graphical Techniques toward the Solution of the General N-body Problem
Group theoretic and graphical techniques are used to derive the N-body wave
function for a system of identical bosons with general interactions through
first-order in a perturbation approach. This method is based on the maximal
symmetry present at lowest order in a perturbation series in inverse spatial
dimensions. The symmetric structure at lowest order has a point group
isomorphic with the S_N group, the symmetric group of N particles, and the
resulting perturbation expansion of the Hamiltonian is order-by-order invariant
under the permutations of the S_N group. This invariance under S_N imposes
severe symmetry requirements on the tensor blocks needed at each order in the
perturbation series. We show here that these blocks can be decomposed into a
basis of binary tensors invariant under S_N. This basis is small (25 terms at
first order in the wave function), independent of N, and is derived using
graphical techniques. This checks the N^6 scaling of these terms at first order
by effectively separating the N scaling problem away from the rest of the
physics. The transformation of each binary tensor to the final normal
coordinate basis requires the derivation of Clebsch-Gordon coefficients of S_N
for arbitrary N. This has been accomplished using the group theory of the
symmetric group. This achievement results in an analytic solution for the wave
function, exact through first order, that scales as N^0, effectively
circumventing intensive numerical work. This solution can be systematically
improved with further analytic work by going to yet higher orders in the
perturbation series.Comment: This paper was submitted to the Journal of Mathematical physics, and
is under revie
Photon signature analysis using template matching
We describe an approach to detect improvised explosive devices (IEDs) by using a template matching procedure. This approach relies on the signature due to backstreaming ? photons from various targets. In this work we have simulated cylindrical targets of aluminum, iron, copper, water and ammonium nitrate (nitrogen-rich fertilizer). We simulate 3.5 MeV source photons distributed on a plane inside a shielded area using Monte Carlo N-Particle (MCNP TM) code version 5 (V5). The 3.5 MeV source gamma rays yield 511 keV peaks due to pair production and scattered gamma rays. In this work, we simulate capture of those photons that backstream, after impinging on the target element, toward a NaI detector. The captured backstreamed photons are expected to produce a unique spectrum that will become part of a simple signal processing recognition system based on the template matching method. Different elements were simulated using different sets of random numbers in the Monte Carlo simulation. To date, the sum of absolute differences (SAD) method has been used to match the template. In the examples investigated, template matching was found to detect all elements correctly
Can you credit it? Towards a process for ascribing credit to apprenticeships in England
Purpose – Apprenticeships in England, while defined by level and typical duration, are not quantified regarding the number of learning hours required to achieve the outcomes specified, as with other regulated qualifications and accredited programmes. This paper proposes an approach to ascribe credit to apprenticeships recognising both on-and-off-the-job learning to remove some of the existing barriers to accessing higher education (HE) and the professions.
Design/methodology/approach – A mixed methodological approach resulting in a total learning hours/ credit value was proposed.
Findings – There is significant HE-wide confusion regarding the amount of learning/training that is required to complete apprenticeships in England. Whilst sector guidance made it clear that there was no prescribed method to ascribe credit to qualifications, programmes, modules, units or apprenticeships by drawing out the core principles within current practice, a key outcome of this project was the development of a method to ascribe a credit value to apprenticeships.
Research limitations/implications – There is potential to support further research into the recognition of prior learning as a specialised pedagogy and for reflecting on apprenticeship practice in other roles and sectors. Practical implications – Whilst the project underpinning this paper focused on the healthcare sector, the method used to ascribe credit to the level-3 healthcare support worker apprenticeship was not sector specific and can therefore be applied to apprenticeships within other contexts providing more widespread benefits to workforce development.
Social implications – Policy makers must ensure that employers and providers are clear that the minimum statutory off-the-job hours constitute an apprentice employment entitlement, which must not be conflated with total apprenticeship learning hours requirements. This recommended policy clarification could assist in simplifying the process required for ascribing credit to apprenticeships and at the same time support a move towards better and more consistent recognition of the value of apprenticeship learning.
Originality/value – It is a first attempt to ascribe a credit value to an apprenticeship in England for the specific purpose of facilitating progression to HE
Subnanosecond GPS-based clock synchronization and precision deep-space tracking
Interferometric spacecraft tracking is accomplished by the Deep Space Network (DSN) by comparing the arrival time of electromagnetic spacecraft signals at ground antennas separated by baselines on the order of 8000 km. Clock synchronization errors within and between DSN stations directly impact the attainable tracking accuracy, with a 0.3-nsec error in clock synchronization resulting in an 11-nrad angular position error. This level of synchronization is currently achieved by observing a quasar which is angularly close to the spacecraft just after the spacecraft observations. By determining the differential arrival times of the random quasar signal at the stations, clock offsets and propagation delays within the atmosphere and within the DSN stations are calibrated. Recent developments in time transfer techniques may allow medium accuracy (50-100 nrad) spacecraft tracking without near-simultaneous quasar-based calibrations. Solutions are presented for a worldwide network of Global Positioning System (GPS) receivers in which the formal errors for DSN clock offset parameters are less than 0.5 nsec. Comparisons of clock rate offsets derived from GPS measurements and from very long baseline interferometry (VLBI), as well as the examination of clock closure, suggest that these formal errors are a realistic measure of GPS-based clock offset precision and accuracy. Incorporating GPS-based clock synchronization measurements into a spacecraft differential ranging system would allow tracking without near-simultaneous quasar observations. The impact on individual spacecraft navigation-error sources due to elimination of quasar-based calibrations is presented. System implementation, including calibration of station electronic delays, is discussed
Performance evaluation of a kinesthetic-tactual display
Simulator studies demonstrated the feasibility of using kinesthetic-tactual (KT) displays for providing collective and cyclic command information, and suggested that KT displays may increase pilot workload capability. A dual-axis laboratory tracking task suggested that beyond reduction in visual scanning, there may be additional sensory or cognitive benefits to the use of multiple sensory modalities. Single-axis laboratory tracking tasks revealed performance with a quickened KT display to be equivalent to performance with a quickened visual display for a low frequency sum-of-sinewaves input. In contrast, an unquickened KT display was inferior to an unquickened visual display. Full scale simulator studies and/or inflight testing are recommended to determine the generality of these results
- …