252 research outputs found

    Cluster electron observations of the separatrix layer during traveling compression regions

    Get PDF
    [ 1] We present Cluster 4-point observations of electrons during traveling compression regions ( TCRs) on 19 September 2001. The electron and \B\ signatures vary with distance from the plasma sheet, confirming that transient plasma sheet bulges propagate past Cluster. TCRs with \B\ increases have either no electron signature, or unidirectional similar to1 keV electrons at the plasma sheet edge. However, spacecraft initially near the plasma sheet edge are engulfed within the bulge and observe a diamagnetic reduction in \B\. In cases where the underlying plasma sheet bulge moves earthward, electrons at the plasma sheet edge stream tailward. We suggest this represents either a remote observation of electrons closing the Hall current system in an ion diffusion region located farther tailward, or the outflow jets along the separatrix formed by a second neutral line located farther earthward of the spacecraft. The latter case implies the simultaneous action of multiple X-lines in the near-Earth tail

    Dual spacecraft determinations of magnetopause motion

    Get PDF
    We examine the motion of Earth's magnetopause for 16 dawnside traversals of this boundary by the sister spacecraft AMPTE/UKS and IRM in December, 1984, when their separation was 400-900 km. We compare magnetopause normal vectors, n, and speeds of motion, u(n), obtained separately from each spacecraft by use of three different methods, and also compare those u(n) to corresponding speeds, u(n)*, obtained from observed time lags between the two spacecraft. Agreement between u, values and n vectors determined from the three methods ranges from poor to excellent. Comparing u(n)* and u(n) values, we find a clear tendency for \ u(n)*\ to be larger than \ u(n)\: While slightly less than half of the results show reasonable agreement (0.5 < u(n)/u(n)* < 2), there are about as many results in the range 0 < u(n)/u(n)* < 0.5, and a few cases give the wrong sign of u(n)

    Evidence for a flux transfer event generated by multiple X-line reconnection at the magnetopause

    Get PDF
    Magnetic flux transfer events (FTEs) are signatures of unsteady magnetic reconnection, often observed at planetary magnetopauses. Their generation mechanism, a key ingredient determining how they regulate the transfer of solar wind energy into magnetospheres, is still largely unknown. We report THEMIS spacecraft observations on 2007-06-14 of an FTE generated by multiple X-line reconnection at the dayside magnetopause. The evidence consists of (1) two oppositely-directed ion jets converging toward the FTE that was slowly moving southward, (2) the cross-section of the FTE core being elongated along the magnetopause normal, probably squeezed by the oppositely-directed jets, and (3) bidirectional field-aligned fluxes of energetic electrons in the magnetosheath, indicating reconnection on both sides of the FTE. The observations agree well with a global magnetohydrodynamic model of the FTE generation under large geomagnetic dipole tilt, which implies the efficiency of magnetic flux transport into the magnetotail being lower for larger dipole tilt

    Unusual Location of the Geotail Magnetopause Near Lunar Orbit: A Case Study

    Get PDF
    The Earth's magnetopause is highly variable in location and shape and is modulated by solar wind conditions. On 8 March 2012, the ARTEMIS probes were located near the tail current sheet when an interplanetary shock arrived under northward interplanetary magnetic field conditions and recorded an abrupt tail compression at ∌(‐60, 0, ‐5) RE in Geocentric Solar Ecliptic coordinate in the deep magnetotail. Approximately 10 minutes later, the probes crossed the magnetopause many times within an hour after the oblique interplanetary shock passed by. The solar wind velocity vector downstream from the shock was not directed along the Sun‐Earth line but had a significant Y component. We propose that the compressed tail was pushed aside by the appreciable solar wind flow in the Y direction. Using a virtual spacecraft in a global magnetohydrodynamic (MHD) simulation, we reproduce the sequence of magnetopause crossings in the X‐Y plane observed by ARTEMIS under oblique shock conditions, demonstrating that the compressed magnetopause is sharply deflected at lunar distances in response to the shock and solar wind VY effects. The results from two different global MHD simulations show that the shocked magnetotail at lunar distances is mainly controlled by the solar wind direction with a timescale of about a quarter hour, which appears to be consistent with the windsock effect. The results also provide some references for investigating interactions between the solar wind/magnetosheath and lunar nearside surface during full moon time intervals, which should not happen in general

    Signatures of magnetic separatrices at the borders of a crater flux transfer event connected to an active X‐line

    Get PDF
    In this paper, we present Magnetospheric Multiscale (MMS) observations of a flux transfer event (FTE) characterized by a clear signature in the magnetic field magnitude, which shows maximum at the center flanked by two depressions, detected during a period of stable southward interplanetary magnetic field. This class of FTEs are called “crater‐FTEs” and have been suggested to be connected with active reconnection X line. The MMS burst mode data allow the identification of intense fluctuations in the components of the electric field and electron velocity parallel to the magnetic field at the borders of the FTE, which are interpreted as signatures of the magnetic separatrices. In particular, the strong and persistent fluctuations of the parallel electron velocity at the borders of this crater‐FTE reported for the first time in this paper, sustain the field‐aligned current part of the Hall current system along the separatrix layer, and confirm that this FTE is connected with an active reconnection X line. Our observations suggest a stratification of particles inside the reconnection layer, where electrons are flowing toward the X line along the separatrix, are flowing away from the X line along the reconnected field lines adjacent to the separatrices, and more internally ions and electrons are flowing away from the X line with comparable velocities, forming the reconnection jets. This stratification of the reconnection layer forming the FTE, together with the reconnection jet at the trailing edge of the FTE, suggests clearly that this FTE is formed by the single X line generation mechanism

    Curlometer technique and applications

    Get PDF
    We review the range of applications and use of the curlometer, initially developed to analyze Cluster multi-spacecraft magnetic field data; but more recently adapted to other arrays of spacecraft flying in formation, such as MMS small-scale, 4-spacecraft configurations; THEMIS close constellations of 3–5 spacecraft, and Swarm 2–3 spacecraft configurations. Although magnetic gradients require knowledge of spacecraft separations and the magnetic field, the structure of the electric current density (for example, its relative spatial scale), and any temporal evolution, limits measurement accuracy. Nevertheless, in many magnetospheric regions the curlometer is reliable (within certain limits), particularly under conditions of time stationarity, or with supporting information on morphology (for example, when the geometry of the large scale structure is expected). A number of large-scale regions have been covered, such as: the cross-tail current sheet, ring current, the current layer at the magnetopause and field-aligned currents. Transient and smaller scale current structures (e.g., reconnected flux tube or dipolarisation fronts) and energy transfer processes. The method is able to provide estimates of single components of the vector current density, even if there are only two or three satellites flying in formation, within the current region, as can be the case when there is a highly irregular spacecraft configuration. The computation of magnetic field gradients and topology in general includes magnetic rotation analysis and various least squares approaches, as well as the curlometer, and indeed the added inclusion of plasma measurements and the extension to larger arrays of spacecraft have recently been considered

    Severity of Giardia infection associated with post-infectious fatigue and abdominal symptoms two years after

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A high rate of post-infectious fatigue and abdominal symptoms two years after a waterborne outbreak of giardiasis in Bergen, Norway in 2004 has previously been reported. The aim of this report was to identify risk factors associated with such manifestations.</p> <p>Methods</p> <p>All laboratory confirmed cases of giardiasis (n = 1262) during the outbreak in Bergen in 2004 received a postal questionnaire two years after. Degree of post-infectious abdominal symptoms and fatigue, as well as previous abdominal problems, was recorded. In the statistical analyses number of treatment courses, treatment refractory infection, delayed education and sick leave were used as indices of protracted and severe <it>Giardia </it>infection. Age, gender, previous abdominal problems and symptoms during infection were also analysed as possible risk factors. Simple and multiple ordinal logistic regression models were used for the analyses.</p> <p>Results</p> <p>The response rate was 81% (1017/1262), 64% were women and median age was 31 years (range 3-93), compared to 61% women and 30 years (range 2-93) among all 1262 cases. Factors in multiple regression analysis significantly associated with abdominal symptoms two years after infection were: More than one treatment course, treatment refractory infection, delayed education, bloating and female gender. Abdominal problems prior to <it>Giardia </it>infection were not associated with post-infectious abdominal symptoms. More than one treatment course, delayed education, sick leave more than 2 weeks, and malaise at the time of infection, were significantly associated with fatigue in the multiple regression analysis, as were increasing age and previous abdominal problems.</p> <p>Conclusion</p> <p>Protracted and severe <it>giardiasis </it>seemed to be a risk factor for post-infectious fatigue and abdominal symptoms two years after clearing the <it>Giardia </it>infection.</p

    Optical Magnetometry

    Get PDF
    Some of the most sensitive methods of measuring magnetic fields utilize interactions of resonant light with atomic vapor. Recent developments in this vibrant field are improving magnetometers in many traditional areas such as measurement of geomagnetic anomalies and magnetic fields in space, and are opening the door to new ones, including, dynamical measurements of bio-magnetic fields, detection of nuclear magnetic resonance (NMR), magnetic-resonance imaging (MRI), inertial-rotation sensing, magnetic microscopy with cold atoms, and tests of fundamental symmetries of Nature.Comment: 11 pages; 4 figures; submitted to Nature Physic

    The NIRVANDELS Survey: A robust detection of α-enhancement in star-forming galaxies at z ≃3.4

    Get PDF
    We present results from the NIRVANDELS survey on the gas-phase metallicity (Zg, tracing O/H) and stellar metallicity (Z∗, tracing Fe/H) of 33 star-forming galaxies at redshifts 2.95 3, finding (O/Fe) = 2.54 ± 0.38 × (O/Fe)⊙, with no clear dependence on M∗

    Satellite Observations of Separator Line Geometry of Three-Dimensional Magnetic Reconnection

    Full text link
    Detection of a separator line that connects magnetic nulls and the determination of the dynamics and plasma environment of such a structure can improve our understanding of the three-dimensional (3D) magnetic reconnection process. However, this type of field and particle configuration has not been directly observed in space plasmas. Here we report the identification of a pair of nulls, the null-null line that connects them, and associated fans and spines in the magnetotail of Earth using data from the four Cluster spacecraft. With di and de designating the ion and electron inertial lengths, respectively, the separation between the nulls is found to be ~0.7di and an associated oscillation is identified as a lower hybrid wave with wavelength ~ de. This in situ evidence of the full 3D reconnection geometry and associated dynamics provides an important step toward to establishing an observational framework of 3D reconnection.Comment: 10 pages, 3 figures and 1 tabl
    • 

    corecore