101 research outputs found

    Perceived Conflict of Interest in Health Science Partnerships

    Get PDF
    University scientists conducting research on topics of potential health concern often want to partner with a range of actors, including government entities, non-governmental organizations, and private enterprises. Such partnerships can provide access to needed resources, including funding. However, those who observe the results of such partnerships may judge those results based on who is involved. This set of studies seeks to assess how people perceive two hypothetical health science research collaborations. In doing so, it also tests the utility of using procedural justice concepts to assess perceptions of research legitimacy as a theoretical way to investigate conflict of interest perceptions. Findings show that including an industry collaborator has clear negative repercussions for how people see a research partnership and that these perceptions shape people’s willingness to see the research as a legitimate source of knowledge. Additional research aimed at further communicating procedures that might mitigate the impact of industry collaboration is suggested

    Local is not always better: the impact of climate information on values, behavior and policy support

    Get PDF
    In the current research, we experimentally examined the effect of providing local or global information about the impacts of climate change on individuals’ perceived importance of climate change and on their willingness to take action to address it, including policy support. We examined these relationships in the context of individuals’ general value orientations. Our findings, from 99 US residents, suggest that different kinds of climate information (local, global, or none) interact with values vis-à-vis our dependent variables. Specifically, while self-transcendent values predict perceived importance and pro-environmental behavior across all three information conditions, the effect on policy support is less clear. Furthermore, we detected a “reactance effect” where individuals with self-enhancing values who read local information thought that climate change was less important and were less willing to engage in pro-environmental behavior and support policy than self-enhancing individuals in the other information conditions. These results suggest that policy makers and public communicators may want to be cognizant of their audience’s general value orientation. Local information may not only be ineffective but may also prove counterproductive with individuals whose value orientations are more self-enhancing than self-transcendent

    Tolerance of sponge assemblages to temperature anomalies: resilience and proliferation of sponges following the 1997-8 El-Niño southern oscillation.

    Get PDF
    Coral reefs across the world are under threat from a range of stressors, and while there has been considerable focus on the impacts of these stressors on corals, far less is known about their effect on other reef organisms. The 1997-8 El-Niño Southern Oscillation (ENSO) had notable and severe impacts on coral reefs worldwide, but not all reef organisms were negatively impacted by this large-scale event. Here we describe how the sponge fauna at Bahia, Brazil was influenced by the 1997-8 ENSO event. Sponge assemblages from three contrasting reef habitats (reef tops, walls and shallow banks) at four sites were assessed annually from 1995 to 2011. The within-habitat sponge diversity did not vary significantly across the study period; however, there was a significant increase in density in all habitats. Multivariate analyses revealed no significant difference in sponge assemblage composition (ANOSIM) between pre- and post-ENSO years for any of the habitats, suggesting that neither the 1997-8 nor any subsequent smaller ENSO events have had any measurable impact on the reef sponge assemblage. Importantly, this is in marked contrast to the results previously reported for a suite of other taxa (including corals, echinoderms, bryozoans, and ascidians), which all suffered mass mortalities as a result of the ENSO event. Our results suggest that of all reef taxa, sponges have the potential to be resilient to large-scale thermal stress events and we hypothesize that sponges might be less affected by projected increases in sea surface temperature compared to other major groups of reef organisms

    Systems Biology of the Clock in Neurospora crassa

    Get PDF
    A model-driven discovery process, Computing Life, is used to identify an ensemble of genetic networks that describe the biological clock. A clock mechanism involving the genes white-collar-1 and white-collar-2 (wc-1 and wc-2) that encode a transcriptional activator (as well as a blue-light receptor) and an oscillator frequency (frq) that encodes a cyclin that deactivates the activator is used to guide this discovery process through three cycles of microarray experiments. Central to this discovery process is a new methodology for the rational design of a Maximally Informative Next Experiment (MINE), based on the genetic network ensemble. In each experimentation cycle, the MINE approach is used to select the most informative new experiment in order to mine for clock-controlled genes, the outputs of the clock. As much as 25% of the N. crassa transcriptome appears to be under clock-control. Clock outputs include genes with products in DNA metabolism, ribosome biogenesis in RNA metabolism, cell cycle, protein metabolism, transport, carbon metabolism, isoprenoid (including carotenoid) biosynthesis, development, and varied signaling processes. Genes under the transcription factor complex WCC ( = WC-1/WC-2) control were resolved into four classes, circadian only (612 genes), light-responsive only (396), both circadian and light-responsive (328), and neither circadian nor light-responsive (987). In each of three cycles of microarray experiments data support that wc-1 and wc-2 are auto-regulated by WCC. Among 11,000 N. crassa genes a total of 295 genes, including a large fraction of phosphatases/kinases, appear to be under the immediate control of the FRQ oscillator as validated by 4 independent microarray experiments. Ribosomal RNA processing and assembly rather than its transcription appears to be under clock control, suggesting a new mechanism for the post-transcriptional control of clock-controlled genes

    Phase-Locked Signals Elucidate Circuit Architecture of an Oscillatory Pathway

    Get PDF
    This paper introduces the concept of phase-locking analysis of oscillatory cellular signaling systems to elucidate biochemical circuit architecture. Phase-locking is a physical phenomenon that refers to a response mode in which system output is synchronized to a periodic stimulus; in some instances, the number of responses can be fewer than the number of inputs, indicative of skipped beats. While the observation of phase-locking alone is largely independent of detailed mechanism, we find that the properties of phase-locking are useful for discriminating circuit architectures because they reflect not only the activation but also the recovery characteristics of biochemical circuits. Here, this principle is demonstrated for analysis of a G-protein coupled receptor system, the M3 muscarinic receptor-calcium signaling pathway, using microfluidic-mediated periodic chemical stimulation of the M3 receptor with carbachol and real-time imaging of resulting calcium transients. Using this approach we uncovered the potential importance of basal IP3 production, a finding that has important implications on calcium response fidelity to periodic stimulation. Based upon our analysis, we also negated the notion that the Gq-PLC interaction is switch-like, which has a strong influence upon how extracellular signals are filtered and interpreted downstream. Phase-locking analysis is a new and useful tool for model revision and mechanism elucidation; the method complements conventional genetic and chemical tools for analysis of cellular signaling circuitry and should be broadly applicable to other oscillatory pathways

    Global Transcriptome and Deletome Profiles of Yeast Exposed to Transition Metals

    Get PDF
    A variety of pathologies are associated with exposure to supraphysiological concentrations of essential metals and to non-essential metals and metalloids. The molecular mechanisms linking metal exposure to human pathologies have not been clearly defined. To address these gaps in our understanding of the molecular biology of transition metals, the genomic effects of exposure to Group IB (copper, silver), IIB (zinc, cadmium, mercury), VIA (chromium), and VB (arsenic) elements on the yeast Saccharomyces cerevisiae were examined. Two comprehensive sets of metal-responsive genomic profiles were generated following exposure to equi-toxic concentrations of metal: one that provides information on the transcriptional changes associated with metal exposure (transcriptome), and a second that provides information on the relationship between the expression of ∼4,700 non-essential genes and sensitivity to metal exposure (deletome). Approximately 22% of the genome was affected by exposure to at least one metal. Principal component and cluster analyses suggest that the chemical properties of the metal are major determinants in defining the expression profile. Furthermore, cells may have developed common or convergent regulatory mechanisms to accommodate metal exposure. The transcriptome and deletome had 22 genes in common, however, comparison between Gene Ontology biological processes for the two gene sets revealed that metal stress adaptation and detoxification categories were commonly enriched. Analysis of the transcriptome and deletome identified several evolutionarily conserved, signal transduction pathways that may be involved in regulating the responses to metal exposure. In this study, we identified genes and cognate signaling pathways that respond to exposure to essential and non-essential metals. In addition, genes that are essential for survival in the presence of these metals were identified. This information will contribute to our understanding of the molecular mechanism by which organisms respond to metal stress, and could lead to an understanding of the connection between environmental stress and signal transduction pathways

    The perceptions of social responsibility for community resilience to flooding: the impact of past experience, age, gender and ethnicity

    Get PDF
    Community resilience to flooding depends, to a large extent, on the participation of community members to take more responsibility for enhancing their own resilience. The perception of social responsibility (SR) which is argued to be one of the antecedents influencing individual’s willingness to undertake resilient behaviours can significantly contribute to community resilience through individual and collective actions. Understanding of factors influencing the perceptions of SR of individuals within community might help with developing strategies to increase the perceptions of SR. This research explores perceptions of SR in relation to flooding for householders and local businesses and establishes their relationships with experience of flooding and demographic factors of age, gender and ethnicity. The data were obtained via a questionnaire survey of three communities in Birmingham and one community in South East London, UK, three with experience of flooding and one without. A total of 414 responses were received and used in the multiple regression analysis. The analysis identified ‘experience of flooding’, ‘age’ and ‘South Asian’ ethnic group as significant variables, suggesting that older individuals from South Asian ethnic groups with previous experience of flooding are likely to be more socially responsible than others without these attributes

    Congestion control in wireless sensor and 6LoWPAN networks: toward the Internet of Things

    Get PDF
    The Internet of Things (IoT) is the next big challenge for the research community where the IPv6 over low power wireless personal area network (6LoWPAN) protocol stack is a key part of the IoT. Recently, the IETF ROLL and 6LoWPAN working groups have developed new IP based protocols for 6LoWPAN networks to alleviate the challenges of connecting low memory, limited processing capability, and constrained power supply sensor nodes to the Internet. In 6LoWPAN networks, heavy network traffic causes congestion which significantly degrades network performance and impacts on quality of service aspects such as throughput, latency, energy consumption, reliability, and packet delivery. In this paper, we overview the protocol stack of 6LoWPAN networks and summarize a set of its protocols and standards. Also, we review and compare a number of popular congestion control mechanisms in wireless sensor networks (WSNs) and classify them into traffic control, resource control, and hybrid algorithms based on the congestion control strategy used. We present a comparative review of all existing congestion control approaches in 6LoWPAN networks. This paper highlights and discusses the differences between congestion control mechanisms for WSNs and 6LoWPAN networks as well as explaining the suitability and validity of WSN congestion control schemes for 6LoWPAN networks. Finally, this paper gives some potential directions for designing a novel congestion control protocol, which supports the IoT application requirements, in future work

    The Paradox of Engagement: Land Stewardship and Invasive Weeds in Amenity Landscapes

    Get PDF
    In New South Wales, Australia, rural landscapes are undergoing profound change as a result of exurbanization. Newcomers-amenity migrants-are drawn to the scenic beaches, forests, and open landscape character of this part of Australia near Sydney and they join existing communities of long-term residents, notably ranchers involved in dairy, beef, and other types of primary agricultural production. The rural to exurban transition is stimulating both intended and unintended socio-ecological changes, especially the proliferation of invasive weeds, which are considered to be a top national priority as they threaten Australia\u27s agricultural economy. Drawing on interview and survey research from three case studies in New South Wales, locations where an influx of exurbanites has led to mixed landscapes of production and consumption, we explore landowners\u27 diverse environmental ideologies, the degree to which they collaborate with one another, and their specific land-use practices. Results show that an overwhelming majority of both exurbanites and ranchers express concerns about weeds, but there is a marked lack of coordinated engagement on invasive species between the two types of groups. This chapter is an example of social disengagement over land-use and land-cover change, rather than competition or cooperation, and contributes to a political ecological understanding of the co-construction of social relations and land management regimes
    corecore