43 research outputs found

    Reducing the Risks: Reflections on Bridging Home and School Communication

    Get PDF
    Recent scholarship on literacy development has focused on studying young at-risk learners (Allen and Mason, 1989; Clay, 1982; Taylor and Dorsey-Gaines, 1988; Swap, 1990; Teale and Sulzby, 1986). As kindergarten and first grade teachers we worried about many of our students whose families were not in the cultural mainstream and whose literacy backgrounds appeared different from those of our more successful children. As we thought about how we might better teach our children we began to consider how we could improve our communication with the children\u27s parents to begin to build a partner ship between home and school literacy experiences. We wanted to be supportive and invitational with the parents. We hoped to provide the parents with information which they could use in helping their children interact with print, and, importantly, we wanted to learn from the parents. We valued their input and welcomed information that they could provide which would allow us to build our program to sup port the home. We wished to begin to build a two way bridge that would connect home and school literacy practice

    Duration and exposure to virtual environments: Sickness curves during and across sessions

    Get PDF
    Although simulator sickness is known to increase with protracted exposure and to diminish with repeated sessions, limited systematic research has been performed in these areas. This study reviewed the few studies with sufficient information available to determine the effect-that exposure duration and repeated exposure have on motion sickness. This evaluation confirmed that longer exposures produce more symptoms and that total sickness subsides over repeated exposures. Additional evaluation was performed to investigate the precise form of this relationship and to determine whether the same form was generalizable across varied simulator environments. The results indicated that exposure duration and repeated exposures are significantly linearly related to sickness outcomes (duration being positively related and repetition negatively related to total sickness). This was true over diverse systems and large subject pools. This result verified the generalizability of-the relationships among sickness, exposure duration, and repeated exposures. Additional research is indicated to determine the optimal length of a single exposure and the optimal intersession interval to facilitate adaptation

    Neither fair nor unchangeable but part of the natural order: orientations towards inequality in the face of criticism of the economic system

    Get PDF
    The magnitude of climate change threats to life on the planet is not matched by the level of current mitigation strategies. To contribute to our understanding of inaction in the face of climate change, the reported study draws upon the pro status quo motivations encapsulated within System Justification Theory. In an online questionnaire study, participants (N = 136) initially completed a measure of General System Justification. Participants in a “System-critical” condition were then exposed to information linking environmental problems to the current economic system; participants in a Control condition were exposed to information unrelated to either environmental problems or the economic system. A measure of Economic System Justification was subsequently administered. Regressions of Economic System Justification revealed interactions between General System Justification and Information Type: higher general system justifiers in the System-critical condition rated the economic system as less fair than did their counterparts in the Control condition. However, they also indicated inequality as more natural than did their counterparts in the Control condition. The groups did not differ in terms of beliefs about the economic system being open to change. The results are discussed in terms of how reassurance about the maintenance of the status quo may be bolstered by recourse to beliefs in a natural order

    Guidelines for Genome-Scale Analysis of Biological Rhythms

    Get PDF
    Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding “big data” that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Guidelines for Genome-Scale Analysis of Biological Rhythms

    Get PDF
    Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding ‘big data’ that is conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them

    A model of the cell-autonomous mammalian circadian clock

    No full text
    Circadian timekeeping by intracellular molecular clocks is evident widely in prokaryotes and eukaryotes. The clockworks are driven by autoregulatory feedback loops that lead to oscillating levels of components whose maxima are in fixed phase relationships with one another. These phase relationships are the key metric characterizing the operation of the clocks. In this study, we built a mathematical model from the regulatory structure of the intracellular circadian clock in mice and identified its parameters using an iterative evolutionary strategy, with minimum cost achieved through conformance to phase separations seen in cell-autonomous oscillators. The model was evaluated against the experimentally observed cell-autonomous circadian phenotypes of gene knockouts, particularly retention of rhythmicity and changes in expression level of molecular clock components. These tests reveal excellent de novo predictive ability of the model. Furthermore, sensitivity analysis shows that these knockout phenotypes are robust to parameter perturbation
    corecore