64 research outputs found

    Strong Lens Models for 37 Clusters of Galaxies from the SDSS Giant Arcs Survey

    Full text link
    We present strong gravitational lensing models for 37 galaxy clusters from the SDSS Giant Arcs Survey. We combine data from multi-band Hubble Space Telescope WFC3imaging, with ground-based imaging and spectroscopy from Magellan, Gemini, APO, and MMT, in order to detect and spectroscopically confirm new multiply-lensed background sources behind the clusters. We report spectroscopic or photometric redshifts of sources in these fields, including cluster galaxies and background sources. Based on all available lensing evidence, we construct and present strong lensing mass models for these galaxy clusters.Comment: 53 pages; submitted to ApJ

    Testing for SARS-CoV-2 infection in care home residents and staff in English care homes: A service evaluation

    Get PDF
    Context COVID-19 is especially dangerous to older adults living in residential care. Objective To evaluate the usefulness of a nurse-led Enhanced Care Home Team (ECHT) SARS-CoV-2 testing strategy to identify resident cases early, identify typical illness presentation residents, and correctly attribute cause of death in care home settings in Norfolk, UK. Method Residents and staff received nose and throat swab tests (7 April to 29 June 2020). Resident test results were linked with symptoms on days 0-14 after test and mortality to 13 July 2020. The data collected were used to evaluate service performance. Findings Residents (n=521) and staff (estimated n=340) in 44 care homes were tested in the ECHT service. SARS-CoV-2 positivity was identified in 103 residents in 14 homes and 49 staff in seven homes. Of 103 SARS-CoV-2+ residents, just 37 had what were understood to be typical COVID-19 symptom(s). Among 51 residents without symptoms when initially tested, 13 (25%) developed symptoms within 14 days. Many SARS-CoV-2+ residents lacked typical symptoms but presented rather as β€˜generally unwell’ (n=16). Of 39 resident deaths during the monitoring period, 20 (51%) were initially attributed to SARS-CoV-2, all of whom tested SARS-CoV-2+. One deceased person not initially attributed to SARS-CoV-2 tested positive through a different monitoring programme. 9% of all staff tests were positive. Implications A locally designed and integrated joint nursing and social care team approach successfully identified asymptomatic and pre-symptomatic SARS-CoV-2+ residents and staff. Being β€˜generally unwell’ was common amongst symptomatic residents and indicated SARS-CoV-2 infection in older people in the absence of more β€˜typical’ symptoms. The service supported correct attribution of cause of death

    Lens Model and Source Reconstruction Reveal the Morphology and Star Formation Distribution in the Cool Spiral LIRG SGAS J143845.1++145407

    Full text link
    We present HubbleΒ SpaceΒ TelescopeHubble\ Space\ Telescope (HSTHST) imaging and grism spectroscopy of a strongly lensed LIRG at z=0.816z=0.816, SGAS 143845.1++145407, and use the magnification boost of gravitational lensing to study the distribution of star formation throughout this galaxy. Based on the HSTHST imaging data, we create a lens model for this system; we compute the mass distribution and magnification map of the z=0.237z=0.237 foreground lens. We find that the magnification of the lensed galaxy ranges between 22 and 1010, with a total magnification (measured over all the images of the source) of ΞΌ=11.8βˆ’2.4+4.6\mu=11.8^{+4.6}_{-2.4}. We find that the total projected mass density within ∼34\sim34 kpc of the brightest cluster galaxy is 6.0βˆ’0.7+0.3Γ—1012 MβŠ™6.0^{+0.3}_{-0.7}\times10^{12}\,M_{\odot}. Using the lens model we create a source reconstruction for SGAS 143845.1++145407, which paired with a faint detection of HΞ±\alpha in the grism spectroscopy, allows us to finally comment directly on the distribution of star formation in a z∼1z\sim1 LIRG. We find widespread star formation across this galaxy, in agreement with the current understanding of these objects. However, we note a deficit of HΞ±\alpha emission in the nucleus of SGAS 143845.1++145407, likely due to dust extinction.Comment: 7 pages, 8 figures, 2 table

    18S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells

    Get PDF
    Background: One requisite of quantitative reverse transcription PCR (qRT-PCR) is to normalise the data with an internal reference gene that is invariant regardless of treatment, such as virus infection. Several studies have found variability in the expression of commonly used housekeeping genes, such as beta-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), under different experimental settings. However, ACTB and GAPDH remain widely used in the studies of host gene response to virus infections, including influenza viruses. To date no detailed study has been described that compares the suitability of commonly used housekeeping genes in influenza virus infections. The present study evaluated several commonly used housekeeping genes [ACTB, GAPDH, 18S ribosomal RNA (18S rRNA), ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide (ATP5B) and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) (ATP5G1)] to identify the most stably expressed gene in human, pig, chicken and duck cells infected with a range of influenza A virus subtypes. Results: The relative expression stability of commonly used housekeeping genes were determined in primary human bronchial epithelial cells (HBECs), pig tracheal epithelial cells (PTECs), and chicken and duck primary lung-derived cells infected with five influenza A virus subtypes. Analysis of qRT-PCR data from virus and mock infected cells using NormFinder and BestKeeper software programmes found that 18S rRNA was the most stable gene in HBECs, PTECs and avian lung cells. Conclusions: Based on the presented data from cell culture models (HBECs, PTECs, chicken and duck lung cells) infected with a range of influenza viruses, we found that 18S rRNA is the most stable reference gene for normalising qRT-PCR data. Expression levels of the other housekeeping genes evaluated in this study (including ACTB and GPADH) were highly affected by influenza virus infection and hence are not reliable as reference genes for RNA normalisation

    18S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells

    Get PDF
    Background: One requisite of quantitative reverse transcription PCR (qRT-PCR) is to normalise the data with an internal reference gene that is invariant regardless of treatment, such as virus infection. Several studies have found variability in the expression of commonly used housekeeping genes, such as beta-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), under different experimental settings. However, ACTB and GAPDH remain widely used in the studies of host gene response to virus infections, including influenza viruses. To date no detailed study has been described that compares the suitability of commonly used housekeeping genes in influenza virus infections. The present study evaluated several commonly used housekeeping genes [ACTB, GAPDH, 18S ribosomal RNA (18S rRNA), ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide (ATP5B) and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) (ATP5G1)] to identify the most stably expressed gene in human, pig, chicken and duck cells infected with a range of influenza A virus subtypes. Results: The relative expression stability of commonly used housekeeping genes were determined in primary human bronchial epithelial cells (HBECs), pig tracheal epithelial cells (PTECs), and chicken and duck primary lung-derived cells infected with five influenza A virus subtypes. Analysis of qRT-PCR data from virus and mock infected cells using NormFinder and BestKeeper software programmes found that 18S rRNA was the most stable gene in HBECs, PTECs and avian lung cells. Conclusions: Based on the presented data from cell culture models (HBECs, PTECs, chicken and duck lung cells) infected with a range of influenza viruses, we found that 18S rRNA is the most stable reference gene for normalising qRT-PCR data. Expression levels of the other housekeeping genes evaluated in this study (including ACTB and GPADH) were highly affected by influenza virus infection and hence are not reliable as reference genes for RNA normalisation

    8S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells

    Get PDF
    Abstract Background: One requisite of quantitative reverse transcription PCR (qRT-PCR) is to normalise the data with an internal reference gene that is invariant regardless of treatment, such as virus infection. Several studies have found variability in the expression of commonly used housekeeping genes, such as beta-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), under different experimental settings. However, ACTB and GAPDH remain widely used in the studies of host gene response to virus infections, including influenza viruses. To date no detailed study has been described that compares the suitability of commonly used housekeeping genes in influenza virus infections. The present study evaluated several commonly used housekeeping genes [ACTB, GAPDH, 18S ribosomal RNA (18S rRNA), ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide (ATP5B) and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) (ATP5G1)] to identify the most stably expressed gene in human, pig, chicken and duck cells infected with a range of influenza A virus subtypes. Results: The relative expression stability of commonly used housekeeping genes were determined in primary human bronchial epithelial cells (HBECs), pig tracheal epithelial cells (PTECs), and chicken and duck primary lung-derived cells infected with five influenza A virus subtypes. Analysis of qRT-PCR data from virus and mock infected cells using NormFinder and BestKeeper software programmes found that 18S rRNA was the most stable gene in HBECs, PTECs and avian lung cells. Conclusions: Based on the presented data from cell culture models (HBECs, PTECs, chicken and duck lung cells) infected with a range of influenza viruses, we found that 18S rRNA is the most stable reference gene for normalising qRT-PCR data. Expression levels of the other housekeeping genes evaluated in this study (including ACTB and GPADH) were highly affected by influenza virus infection and hence are not reliable as reference genes for RNA normalisation

    18S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells

    Get PDF
    Background: One requisite of quantitative reverse transcription PCR (qRT-PCR) is to normalise the data with an internal reference gene that is invariant regardless of treatment, such as virus infection. Several studies have found variability in the expression of commonly used housekeeping genes, such as beta-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), under different experimental settings. However, ACTB and GAPDH remain widely used in the studies of host gene response to virus infections, including influenza viruses. To date no detailed study has been described that compares the suitability of commonly used housekeeping genes in influenza virus infections. The present study evaluated several commonly used housekeeping genes [ACTB, GAPDH, 18S ribosomal RNA (18S rRNA), ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide (ATP5B) and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) (ATP5G1)] to identify the most stably expressed gene in human, pig, chicken and duck cells infected with a range of influenza A virus subtypes. Results: The relative expression stability of commonly used housekeeping genes were determined in primary human bronchial epithelial cells (HBECs), pig tracheal epithelial cells (PTECs), and chicken and duck primary lung-derived cells infected with five influenza A virus subtypes. Analysis of qRT-PCR data from virus and mock infected cells using NormFinder and BestKeeper software programmes found that 18S rRNA was the most stable gene in HBECs, PTECs and avian lung cells. Conclusions: Based on the presented data from cell culture models (HBECs, PTECs, chicken and duck lung cells) infected with a range of influenza viruses, we found that 18S rRNA is the most stable reference gene for normalising qRT-PCR data. Expression levels of the other housekeeping genes evaluated in this study (including ACTB and GPADH) were highly affected by influenza virus infection and hence are not reliable as reference genes for RNA normalisation

    Highly pathogenic avian influenza virus infection in chickens but not ducks is associated with elevated host immune and pro-inflammatory responses

    Get PDF
    Highly pathogenic avian influenza (HPAI) H5N1 viruses cause severe infection in chickens at near complete mortality, but corresponding infection in ducks is typically mild or asymptomatic. To understand the underlying molecular differences in host response, primary chicken and duck lung cells, infected with two HPAI H5N1 viruses and a low pathogenicity avian influenza (LPAI) H2N3 virus, were subjected to RNA expression profiling. Chicken cells but not duck cells showed highly elevated immune and pro-inflammatory responses following HPAI virus infection. HPAI H5N1 virus challenge studies in chickens and ducks corroborated the in vitro findings. To try to determine the underlying mechanisms, we investigated the role of signal transducer and activator of transcription-3 (STAT-3) in mediating pro-inflammatory response to HPAIV infection in chicken and duck cells. We found that STAT-3 expression was down-regulated in chickens but was up-regulated or unaffected in ducks in vitro and in vivo following H5N1 virus infection. Low basal STAT-3 expression in chicken cells was completely inhibited by H5N1 virus infection. By contrast, constitutively active STAT-3 detected in duck cells was unaffected by H5N1 virus infection. Transient constitutively-active STAT-3 transfection in chicken cells significantly reduced pro-inflammatory response to H5N1 virus infection; on the other hand, chemical inhibition of STAT-3 activation in duck cells increased pro-inflammatory gene expression following H5N1 virus infection. Collectively, we propose that elevated pro-inflammatory response in chickens is a major pathogenicity factor of HPAI H5N1 virus infection, mediated in part by the inhibition of STAT-3

    Transcriptional Profiling in Pathogenic and Non-Pathogenic SIV Infections Reveals Significant Distinctions in Kinetics and Tissue Compartmentalization

    Get PDF
    Simian immunodeficiency virus (SIV) infection leads to AIDS in experimentally infected macaques, whereas natural reservoir hosts exhibit limited disease and pathology. It is, however, unclear how natural hosts can sustain high viral loads, comparable to those observed in the pathogenic model, without developing severe disease. We performed transcriptional profiling on lymph node, blood, and colon samples from African green monkeys (natural host model) and Asian pigtailed macaques (pathogenic model) to directly compare gene expression patterns during acute pathogenic versus non-pathogenic SIV infection. The majority of gene expression changes that were unique to either model were detected in the lymph nodes at the time of peak viral load. Results suggest a shift toward cellular stress pathways and Th1 profiles during pathogenic infection, with strong and sustained type I and II interferon responses. In contrast, a strong type I interferon response was initially induced during non-pathogenic infection but resolved after peak viral load. The natural host also exhibited controlled Th1 profiles and better preservation of overall cell homeostasis. This study identified gene expression patterns that are specific to disease susceptibility, tissue compartmentalization, and infection duration. These patterns provide a unique view of how host responses differ depending upon lentiviral infection outcome

    Critical Loss of the Balance between Th17 and T Regulatory Cell Populations in Pathogenic SIV Infection

    Get PDF
    Chronic immune activation and progression to AIDS are observed after SIV infection in macaques but not in natural host primate species. To better understand this dichotomy, we compared acute pathogenic SIV infection in pigtailed macaques (PTs) to non-pathogenic infection in African green monkeys (AGMs). SIVagm-infected PTs, but not SIVagm-infected AGMs, rapidly developed systemic immune activation, marked and selective depletion of IL-17-secreting (Th17) cells, and loss of the balance between Th17 and T regulatory (Treg) cells in blood, lymphoid organs, and mucosal tissue. The loss of Th17 cells was found to be predictive of systemic and sustained T cell activation. Collectively, these data indicate that loss of the Th17 to Treg balance is related to SIV disease progression
    • …
    corecore