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Highly pathogenic avian influenza virus infection
in chickens but not ducks is associated with
elevated host immune and pro-inflammatory
responses
Suresh V Kuchipudi1*, Meenu Tellabati1, Sujith Sebastian1, Brandon Z Londt2, Christine Jansen3,
Lonneke Vervelde3,4, Sharon M Brookes2, Ian H Brown2, Stephen P Dunham1 and Kin-Chow Chang1
Abstract

Highly pathogenic avian influenza (HPAI) H5N1 viruses cause severe infection in chickens at near complete
mortality, but corresponding infection in ducks is typically mild or asymptomatic. To understand the underlying
molecular differences in host response, primary chicken and duck lung cells, infected with two HPAI H5N1 viruses
and a low pathogenicity avian influenza (LPAI) H2N3 virus, were subjected to RNA expression profiling. Chicken cells
but not duck cells showed highly elevated immune and pro-inflammatory responses following HPAI virus infection.
HPAI H5N1 virus challenge studies in chickens and ducks corroborated the in vitro findings. To try to determine the
underlying mechanisms, we investigated the role of signal transducer and activator of transcription-3 (STAT-3) in
mediating pro-inflammatory response to HPAIV infection in chicken and duck cells. We found that STAT-3 expression
was down-regulated in chickens but was up-regulated or unaffected in ducks in vitro and in vivo following H5N1
virus infection. Low basal STAT-3 expression in chicken cells was completely inhibited by H5N1 virus infection. By
contrast, constitutively active STAT-3 detected in duck cells was unaffected by H5N1 virus infection. Transient
constitutively-active STAT-3 transfection in chicken cells significantly reduced pro-inflammatory response to H5N1
virus infection; on the other hand, chemical inhibition of STAT-3 activation in duck cells increased pro-inflammatory
gene expression following H5N1 virus infection. Collectively, we propose that elevated pro-inflammatory response in
chickens is a major pathogenicity factor of HPAI H5N1 virus infection, mediated in part by the inhibition of STAT-3.
Introduction
Avian influenza A viruses continue to spread globally
causing millions of poultry deaths and are significant zoo-
notic pathogens [1]. In particular, Eurasian lineage highly
pathogenic avian influenza (HPAI) H5N1 virus infection
causes severe disease in humans with a fatality rate of
about 60% [2]. Most human influenza pandemics of the
20th century had been caused by influenza A viruses
(IAVs) that originated, either wholly or in part, from avian
influenza A viruses [3]. Ducks and waterfowl are reser-
voirs for most IAVs, including the hemagglutinin (HA)
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and neuraminidase (NA) subtypes that have caused previ-
ous human pandemics [4]. Despite being susceptible to in-
fection with a wide range of IAVs, such birds often show
little or no clinical signs [5,6].
In contrast, most HPAI H5N1 virus strains produce

very severe disease in chickens, turkeys and quails often
causing up to 100% mortality within 2–3 days [7,8]. With
their natural resistance, ducks support genetic reassort-
ment of influenza viruses providing a mechanism of
evolution of genetically diverse IAVs including HPAI
H5N1 viruses [9-11]. The rapid onset of fatal disease in
chickens and no evidence of clinical disease in ducks sug-
gests that there are potential differences in the innate
immune mechanisms between these two important avian
hosts. Recent evidence shows that the resistance of ducks
to HPAI virus infection is not absolute. Contemporary
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Eurasian lineage HPAI H5N1 viruses have caused large
numbers of deaths in both poultry and water fowl in-
cluding ducks. Experimental infection of Pekin ducks
(Anas platyrhynchos) with a HPAI H5N1 clade 2.2.1
virus (A/turkey/Turkey/1/2005) causes fatal infection
[12], suggesting that certain clades of contemporary
Eurasian lineage HPAI H5N1 viruses are able to over-
come the natural innate resistance of ducks.
The unusual severity of HPAI H5N1 virus infection in

humans, in contrast to seasonal H3N2 or H1N1 influ-
enza viruses, has been regarded to be due to hyper-acute
induction of pro-inflammatory cytokines often referred
as hypercytokinemia or cytokine storm [13-15]. Pigs show
mild or no clinical signs following HPAI H5N1 virus in-
fection [16]. We recently showed that the innate resist-
ance of pigs to HPAI H5N1 virus is mediated through
reduced pro-inflammation and infectious virus release
[17]. These findings indicate that dysregulation of host
pro-inflammatory response to infection is a key con-
tributing factor to the morbidity and mortality of viru-
lent influenza virus infections. Similarly a recent study
found that excessive delayed inflammatory cytokine re-
sponses may contribute to the severe pathogenicity of
HPAI H7N1 in chickens [18]. However, the patho-
physiology of H5N1 virus infection in chickens and
ducks remains unclear. To further our molecular un-
derstanding of the pathogenesis of HPAI H5N1 virus
infection in chickens and ducks, we examined differ-
ences in host gene response to IAV infection between
chickens and ducks in vitro (in lung cells) and in vivo.

Materials and methods
Viruses
A low pathogenicity avian influenza virus (A/mallard
duck/England/7277/06, referred to as LPAI-H2N3), a
classical HPAI H5N1 virus strain (A/turkey/England/50-
92/91, referred to as H5N1-tyEng91) and a contem-
porary Eurasian lineage clade 2.2.1 HPAI H5N1 virus
(A/turkey/Turkey/1/05, referred to as H5N1-tyTR05)
were used in this study. While the “classical” H5N1
virus typically causes non-lethal infection in ducks
[19], the contemporary Eurasian lineage (clade 2.2.1)
H5N1 virus may cause severe disease with mortality
in ducks [12]. All viruses were grown in 10-day-old
embryonated chicken eggs by allantoic inoculation.

Primary cells and virus infection
Primary cell cultures were isolated from lungs of 4-week-
old broiler chickens and 4-week-old Pekin ducks as
previously described [20]. Cells were grown in collagen
coated cell culture flasks (Costar, Corning, UK) in Dulbecco’s
Modified Eagle’s Medium (DMEM) and Ham’s F12 (1:1)
supplemented with 2% chicken embryo extract (Biosera,
Uckfield, UK), 5% fetal bovine serum, 1% insulin-transferrin
selenium (Life Technologies, Paisley, UK) and antibiotics.
Monolayers of primary cells in 6 well cell culture plates
(Costar) were infected with LPAI or HPAI viruses at
multiplicity of infection (MOI) of 1.0. Three wells of
avian cells were used for each virus infection. Mock in-
fections were performed without virus in triplicate wells
for each cell type. Cells were rinsed with phosphate buff-
ered saline (PBS) and infected with appropriate amount of
the virus in serum free infection medium comprising 2%
Ultroser G (Pal Biosepra, Cedex, France), 500 ng/mL
TPCK trypsin (Sigma-Aldrich, Dorset, UK) and antibiotics
in Ham’s F12 medium. After 2 h incubation with the virus,
the cells were washed three times with PBS and fresh
medium was added.

Immuno-staining for virus nucleoprotein (NP)
To determine the pattern of virus infection, virus and
mock infected cells were fixed in acetone:methanol at
6 hours post-infection (hpi) and were subjected to viral nu-
cleoprotein detection by a primary mouse monoclonal anti-
body (Abcam, Cambridge, UK) followed by visualization
with Envision + system-HRP (DAB; Dako, Ely, UK). Cell
culture supernatants form infected cells were titrated
in MDCK cells to determine focus forming units (ffu)
using an immuno-cytochemical focus assay as previ-
ously described [20].

Microarray gene expression profiling
At 24 hpi, total RNA from each well was extracted using
RNeasy Plus Mini - QIAshredder Kit (Qiagen, Manches-
ter, UK) and the quality of the total RNA samples was
determined using a RNA 6000 nano kit (Agilent 2100
Bioanalyzer, Agilent Technologies, Stockport, UK) follow-
ing the manufacturer’s instructions. Microarray expression
analysis was carried out using GeneChip chicken genome
arrays (Affymetrix, High Wycombe, UK). Duplicate RNA
samples from each of virus or mock infected chicken and
duck cells were used for microarray analysis and a total of
16 array chips (3 viruses × 2 avian species × duplicate, plus
2 chicken and 2 duck mock infected) were used in the
study.
Microarray expression data were analyzed using Gene-

Spring GX11 expression analysis software (Agilent
Technologies) [21,22]. Functional clustering of data was
carried out using DAVID bioinformatics resources version
6.7 [23,24].
To take into account the specificity of heterologous

hybridization (between labelled duck targets on chicken
probes), a well-established analytical tool was used which
involved the hybridization of duck genomic DNA to the
chicken chip to establish specific probe binding for duck
transcriptome analysis using chicken GeneChip arrays.
Cross species array analysis was performed by generat-

ing a probe masking file to select probe-sets on the
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chicken chip for subsequent duck transcriptome analyses
if the probe-set was represented by perfect match (PM)
probes with duck gDNA hybridization intensities above
an experimentally set threshold [25-27]. An additional
file shows the detailed protocols of microarray expres-
sion study including the cross species hybridization
data analysis (see Additional file 1).

Quantitative reverse transcription PCR (qRT-PCR) for viral
and host genes
Viral RNA was extracted from culture media using QIAamp
Viral RNA Mini Kit (Qiagen). One-step qRT-PCR to quan-
tify influenza viral matrix gene was performed as previously
described [20]. Based on the comparison of global gene
expression profiles of chicken and duck cells, key pro-
inflammatory and antiviral genes were selected and
validated by qRT-PCR using the same total RNA sam-
ples as that used for the microarray experiment.
Oligonucleotide primers and hydrolysis probes for Taq-

Man assays were designed from published sequences using
Primer Express software version 3.0.1 (Applied Biosystems,
Life Technologies). All primers were provided by Eurofins
Genomics (Edersberg, Germany) and all probes were sup-
plied by Sigma Aldrich. Primer and probe sequences are
shown in Table 1. qRT-PCR assays for lipopolysaccharide
induced TNF alpha factor (LITAF) and STAT-3 genes were
performed using SYBR green method using same set of
Table 1 Primer and probe sequences for quantitative reverse

Gene GenBank acc. No Primer sequence

Chicken

18S rRNA AF173612.1 Fwd :TGTGCCGCTAGAGGTG

Rev: TGGCAAATGCTTTCGCT

IL-6 EU170468 Fwd :CACGATCCGGCAGATG

Rev: TGGGCGGCCGAGTCT

IL-8 /CXCLi1(K60) NM_205018.1 Fwd :CCCTCGCCACAGAACC

Rev: CAGCCTTGCCCATCATC

IFN-α EU367971 Fwd :CTTCCTCCAAGACAAC

Rev: AGGAACCAGGCACGAG

LITAF AY765397 Fwd :CCCTTCTGAGGCATTTG

Rev: CAGCCTGCAAATTTTGT

STAT-3 NM_001030931.1 Fwd: TGGGTGGAGAAGGACA

Rev: CATGGGCAGGTCAATGG

Duck

Duck IL-6 AB191038 Fwd :CCAAGGTGACGGAGGA

Rev: TGGAGAGTTTCTTCAAG

Duck IL-8 AB236334.1 Fwd :AGCCTGGTAAGGATGG

Rev: GGGTGGATGAACTTCGA

Duck IFN-α DQ861429 Fwd :AACCAGCTTCAGCACC

Rev: TGTGGTTCTGGAGGAAG
primers for both chicken and duck. Melting curve analysis
was performed to ensure the specificity of the SYBR green
PCR. qRT-PCR of cDNA samples converted from total
RNA (Superscript III First-strand cDNA synthesis system,
Life Technologies) was performed on a the LightCycler®
480 (Roche, Burges Hill, UK), and using a relative standard
curve method normalized to 18S ribosomal RNA (18SrRNA)
expression.

HPAI H5N1 virus challenge in chickens and ducks
Three-week-old Lohmann Brown chickens kept in con-
tainment level 3 facilities (AHVLA, Weybridge) were in-
fected with HPAI H5N1-tyTR05 virus. Chickens were
inoculated intranasally and intraocularly with 0.1 mL of
1 × 106 EID50 virus diluted in PBS. Birds were killed at
24 h after infection (three birds each from virus and
control groups), lung and spleen tissues were collected
and stored at −80 °C prior to RNA extraction. Three-
weeks- old Pekin ducks were inoculated with 0.1 mL of
1 × 106 EID50 of H5N1-tyTR05 virus intranasally and in-
traocularly. Birds were killed humanely at 24 hpi (three
birds each from virus and control groups), lung and
spleen tissues were collected and stored at −80 °C prior
to RNA extraction. Tissues were homogenized using
GentleMacs Dissociator (Miltenyi Biotec, Bisley, UK)
and total RNA was extracted from the homogenized
tissues using RNeasy Mini-Kit (Qiagen) following the
transcription PCR assays

Probe sequence

AAATT 5′ (6FAM) TTGGACCGGCGCAAGACGAAC 3′ (TAMRA)

TT

GT 5′ (6FAM)ATAAATCCCGATGAAGTGGTCATCC 3′ (TAMRA)

AA 5′ (6FAM)CCCAGGTGACACCCGGAAGAAACA 3′ (TAMRA)

TTT

GATTACAG 5′ (6FAM)CCTGCGCCTGGGAACACGTCC 3′ (TAMRA)

CTT

GAA

CTTCTT

TCA

TAT

AGAC 5′ (6FAM)TGTCTCCTGGCTGGCTTCGACGA 3′ (TAMRA)

CATTTCTC

GAAAC 5′ (6FAM)AGCTCCGGTGCCAGTGCATAAGCA 3′ (TAMRA)

GTGA

ACATC 5′ (6FAM)TGCTTCCCAGCCGACGCC 3′ (TAMRA)

TGTTG
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manufacturer’s instructions. HPAI H5N1 virus challenge
studies were performed with AHVLA committee ethical
approval and in accordance with the UK 1986 Animal
Scientific Procedure Act and AHVLA code of practice
for performance of scientific studies using animals [License
number 70/7062].

STAT-3 over-expression and chemical inhibition
Based on the high sequence identity of STAT-3 protein
(97%) between chicken and mouse, we used a mouse
STAT-3 expression plasmid for this study. Primary
chicken embryo cells in 6-well culture plates (Costar)
were transiently transfected with constitutively active
mouse STAT-3 expression plasmid [Stat3-C Flag pRc/CM
V, plasmid 8722, Addgene, USA] or empty pRc/CMV vec-
tor (Invitrogen) using TransIT-LT1 reagent (Mirus Bio,
Cambridge, UK). At 80% cell confluence, transfection
mixture containing 250 μL Optimem, 2.5 μg plasmid
DNA and 7.5 μL of TransIT reagent were added. Three
days post-transfection, cells were infected with H5N1-
tyEng91 virus at MOI of 1.0.
Primary duck embryo cells were treated with STAT-3

inhibitor S3I-201 (Calbiochem, Merck, Nottingham, UK),
a cell-permeable amidosalicylic acid compound that binds
STAT3-SH2 domain and prevents STAT3 phosphoryl-
ation/activation, dimerization and DNA-binding, at a final
concentration of 100 μM [28] or vehicle (DMSO) control,
one day before infection. Duck cells were pre-incubated
with H5N1- tyEng91 virus at MOI of 1.0 for 2 h without
S3I-201, after two hours the medium was removed, cells
were rinsed with PBS and fresh medium with S3I-201 was
replaced. At 24 hpi, cell lysates were harvested for protein
and total RNA extractions. Western blotting was per-
formed to detect phospho-STAT-3 (#9131, Cell Signaling
Technology, Hitchin, UK) and influenza nucleoprotein
(NP) (AA5H, #ab 20343, Abcam).

Statistical analysis
qRT-PCR data was subjected to statistical analysis by a
randomization test with a pair-wise reallocation using
relative expression analysis software tool (REST©) [29].

Results
Comparable susceptibility to influenza virus infection and
viral RNA accumulation in chicken and duck cells
Infection of primary chicken and duck lung cells with
LPAI-H2N3, H5N1-tyEng91 or H5N1-tyTR05 at 1.0
multiplicity of infection (MOI) based on MDCK cell
titration resulted in comparable levels of virus infec-
tion as determined by virus NP detection by immuno-
cytochemistry at 6 hpi (Figure 1A to H). Influenza virus
matrix gene expression at 24 hpi with LPAI-H2N3,
H5N1-tyEng91 and H5N1-tyTR05 viruses was compar-
able in chicken and duck cells (Figure 1).
More immune-related genes in chicken cells than duck
cells were induced by influenza virus infection
A DNA microarray based global gene expression approach
with a chicken GeneChip array (Affymetrix) was used to
identify differences in gene expression between chicken
and duck primary lung cells in response to 24 h of infec-
tion with LPAI H2N3, H5N1-tyEng91 or H5N1-tyTR05
viruses. Microarray datasets are available on the gene
expression omnibus (GEO) site under accession num-
ber GSE33389 [30]. “Probe mask file” generated with a
duck genomic DNA hybridization intensity threshold
of 200 provided the highest sensitivity for duck expression
analysis on the chicken GeneChip platform (Figure 2).
Probe masking resulted in a loss of 5639 transcripts out of
the total 38 535 transcripts represented in the original
chicken GeneChip technology.
With one-way ANOVA and filtering at a p < 0.05 from

hybridization results of all 3 virus subtypes, 18 783 out of
38 535 transcripts (48.74%) in chicken cells and, but only
7686 out of 32 896 transcripts (23.36%) in duck cells, were
differentially regulated relative to corresponding controls.
The overlap among filtered genes based on fold change

difference of virus infected (all three viruses) against mock
infected samples provided a quantitative view of genes
that were differentially expressed in chicken (Figure 3A)
and duck (Figure 3B) cells following infection. Of the total
number of differentially expressed genes, 12 891 genes
(33.45%) in chicken cells and 3132 genes (9.52%) in duck
cells were common to all three viruses. Further compara-
tive analysis showed that 546, 754 and 1361 genes were
unique to LPAI H2N3, H5N1-tyEng91 and H5N1-tyTR05
infected chicken cells respectively (Figure 3C). In duck
cells, 645, 534 and 625 genes were unique to LPAI H2N3,
H5N1-tyEng91 and H5N1-tyTR05 infection respectively
(Figure 3D). Gene expression profiles were further
analysed using the functional annotation tool in DA-
VID bioinformatics resources 6.7. Genes representing
cytokines, chemokines, members of immunoglobulin
super family, major histocompatibility complex (MHC),
genes involved in T and B lymphocyte function and
components of immune signalling pathways such as
toll like receptor (TLR) pathway, and janus kinase
(JAK) - signal transducer and activator of transcription
(STAT) (JAK-STAT) pathway were classified as “immune”
genes.
Several genes involved in key biological functions such

as enzymes and transcription factors were down-regulated
in HPAI H5N1virus infected chicken cells while most of
these genes were either up-regulated or not affected in
HPAI H5N1 virus infected duck cells (Table 2).
Many more immune-related genes were differentially

regulated in chicken cells than in ducks cells in response
to infection with the two HPAI H5N1 viruses. Of the 75
immune-related genes that were significantly up-regulated
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Figure 1 Chicken and duck cells showed comparable susceptibility to influenza virus infection and viral RNA accumulation. At 6 hpi
with LPAI H2N3, H5N1 tyEng91 or H5N1 tyTR05 virus infection at MOI 1.0, similar accumulation of influenza nucleoprotein (NP) was evident in
chicken (A,C,E) and duck (B,D,F) cells as detected by immunocytochemistry. Mock-infected chicken (G) and duck (H) cells show no staining.
Comparable accumulation of viral matrix gene RNA between chicken and duck cells at 24 hpi at 1.0 MOI with LPAI H2N3, H5N1-tyEng91 or
H5N1 tyTR05 viruses (I). Data were derived from biological replicates of 3 total RNA samples and the data points are mean relative expression
values normalized to 18SrRNA expression.
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in HPAI H5N1-tyEng91 virus infected chicken cells (fold
change ≥ 1.3 and p < 0.05), expression of 63 genes (84%)
was not significantly affected (p > 0.05) and 12 genes (16%)
were significantly down-regulated (p < 0.05) in correspond-
ing duck cells. Full list of immune related genes that were
differentially regulated between H5N1 virus infected
chicken and duck cells is provided as an additional file
(see Additional file 2). A similar difference in immune
related gene expression was also observed between
chicken and duck cells at 24 h H5N1-tyTR05 virus in-
fection (see Additional file 2). However, some of these im-
mune genes were down-regulated in chicken cells infected
with LPAI H2N3 and the genes that were up-regulated
showed a lower fold increase than those in the HPAI in-
fected chicken cells (see Additional file 2).

Pro-inflammatory genes were up-regulated in infected
chickens (lung cells and in vivo) but not in ducks
Pro-inflammatory cytokine genes, interleukin (IL)- 6, IL-8
(CXCLi1) and IL-10, were highly up-regulated in both
HPAI H5N1 virus infected chicken cells; in contrast, IL-8
expression was unchanged, and IL-6 and IL-10 were down
Figure 2 Genomic DNA (gDNA) hybridization intensity threshold of 2
analysis on the chicken GeneChip. (A) The retention of whole probe-set
representing transcripts, was less sensitive to the increase in gDNA hybr
to retain a probe-set. (B) gDNA hybridization intensity threshold of 200
genes at ±2 fold (p ≤0.05) at 24 h following influenza virus infection com
infected and mock-infected control duck RNA samples on chicken array
regulated in infected duck cells with the same viruses
(Table 3). Expression of IL-18 was up-regulated in duck
cells but was down-regulated in chicken cells following
infection with H5N1-tyEng91 or H5N1-tyTR05 viruses
(Table 3).
Messenger RNA expression levels of LITAF, IL-6 and

IL-8 were significantly up-regulated (p < 0.05) in chicken
cells infected with LPAI-H2N3 (Figure 4A), H5N1-tyEng91
(Figure 4C) or H5N1-tyTR05 viruses (Figure 4E). However,
higher fold increase in the expression was observed in
HPAI viral infections (Figures 4C and E) compared with
LPAI virus infection (Figure 4A) in chicken cells. In
contrast, the three pro-inflammatory genes were either
significantly down-regulated (p < 0.05) or not signifi-
cantly altered (p > 0.05) in duck cells infected with
LPAI H2N3 (Figure 4B), H5N1-tyEng91 (Figure 4D) or
H5N1-tyTR05 viruses (Figure 4 F).
Significant up-regulation (p < 0.05) of LITAF (Figure 5A),

IL-6 (Figure 5B) and IL-8 (Figure 5C) was also detected in
lung and spleen tissues from three-week-old chickens at
24 h of infection with H5N1-tyTR05 or H5N1-tyEng91
HPAI viruses (data not shown), along with abundance of
00 provided the highest sensitivity for duck transcriptomic
s from duck gDNA hybridization on the chicken GeneChip array,
idization intensities as only a minimum of one probe pair is required
gave the highest number of significantly differentially regulated
pared with mock-infected controls. Data derived from hybridizing

.



Figure 3 Summary of global gene expression in chicken and duck cells in response to influenza virus infection. Combined gene expression profiles
of virus infected (all three avian viruses combined) and mock-infected samples showed that 18 783 out of 38 535 transcripts (48.74%) were significantly
differentially regulated (P < 0.05) in chicken cells (A) while only 7686 out of 32 896 transcripts (23.36%) were significantly differentially regulated (P < 0.05) in duck
cells (B) at 24 h following virus infection. Venn diagram overlap of significantly differentially regulated genes with a fold change of ±1.3 (≥ 1.3 fold, p ≤ 0.05) in
(C) chicken cells and (D) duck cells at 24 h following infection with H5N1-tyEng91 (red), H5N1 tyTR05 (blue) or LPAI H2N3 (green) viruses.
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virus matrix gene expression (Figure 5D). In lung and
spleen tissues of 3-week-old Pekin ducks taken at 24 h of
infection with H5N1-tyTR05 virus, despite the detection
of virus matrix gene expression (Figure 5H), LITAF
(Figure 5E) expression was significantly down-regulated
(p < 0.05); IL-6 (Figure 5F) and IL-8 (Figure 5G) expression
was not significantly affected (p > 0.05). In summary, simi-
lar elevated pro-inflammatory response in chickens but



Table 2 Differential expression of genes involved in key biological functions between HPAIV infected chicken and duck
cells (detected by microarray)

Gene
symbol

Gene name Entrez
Gene ID

Chicken cells Duck cells

H5N1-tyEng91 H5N1-tyTR05 H5N1-tyEng91 H5N1-tyTR05

Fold
change

Regulation Fold
change

Regulation Fold
change

Regulation Fold
change

Regulation

Signal transduction

PRKAR2A Protein kinase, cAMP-dependent,
regulatory, type II, alpha

416062 2.27 up 4.59 down 3.96 down 5.86 down

IPO7 Importin 7 423046 - unchanged 2.21 down 4.83 up 2.99 down

GTPase inhibitor activity

GPS1 G protein pathway suppressor 1 417382 2.86 down 3.01 down 2.21 up 3.2 up

Lipid metabolism, production of ROS

ACOX1 Acyl-Coenzyme A oxidase 1,
palmitoyl

417366 4.33 down 2.88 down - unchanged 3.24 up

Enzymes

B4GALNT3 Beta-1,4-N-acetyl-galactosaminyl
transferase 3

418150 2.07 down 1.33 up 2.58 up 2.08 up

DNPEP Aspartyl aminopeptidase 424200 2.38 up 1.3 up - unchanged 1.44 down

Catalytic activity (vit B6 metabolism)

PSAT1 Phosphoserine aminotransferase 1 427263 4.38 down 3.9 down 11.44 up 11.69 up

Transcription factor

RREB1 Ras responsive element binding
protein 1

395920 3.41 down 2.26 down 2.73 up 7.31 up

Isoleucyl-tRNA aminoacylation

IARS2 Isoleucyl-tRNA synthetase 2,
mitochondrial

421346 17.58 down 22.92 down 14.52 up 38.82 up

Peptidolysis, IL-4 biosynthesis

MMP28 Matrix metallopeptidase 28 417523 2.66 down 1.93 down 3.31 up 10.38 up
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subdued pro-inflammatory response in ducks was ob-
served in vitro and in vivo.

Comparable type I Interferon response between influenza
virus infected chickens and ducks
Interferon alpha (IFN-α) expression was up-regulated in
chicken (Figure 6A) and duck (Figure 6B) cells at 24 h of
infection with LPAI-H2N3, H5N1-tyEng91 or H5N1-
tyTR05 virus. Similar significant up-regulation of IFN-α
expression was observed in the lung and spleen tissues
of chickens at 24 h post-challenge with H5N1-tyTR05
(Figure 7B) or H5N1-tyEng91 HPAI viruses (data not
shown). Up-regulation of IFN-α was also found in the
lung and spleen tissues of ducks 24 h post-challenge
with H5N1-tyTR05 HPAI virus (Figure 7D).

Differential regulation of key components of JAK-STAT
pathway between influenza virus infected chicken and
duck cells
Contrasting transcriptional regulation of JAK-STAT pathway
between infected chicken and duck cells was observed by
microarray (Table 3). Following 24 h of infection with
H5N1-tyEng91 or H5N1-tyTR05 virus, members of JAK-
STAT signalling pathway (JAK1, IFN-α receptor 1 [IFNAR1],
STAT-3 and protein inhibitor of activated STAT 2 [PIAS2])
were down-regulated in chicken cells. In duck cells, expres-
sion of IFNAR1, PIAS2 and STAT-3 was up-regulated by
LPAI H2N3 or H5N1-tyEng91 virus infection. Duck JAK1
gene was removed during the probe masking procedure and
hence its expression was not determined. Notably, in duck
cells infected with H5N1-tyTR05 virus, PIAS2 expression
was down-regulated, STAT3 was unchanged and IFNAR1
was up-regulated.
STAT-3 mRNA expression was validated in chicken

and duck cells by qRT-PCR using the same total RNA
samples that were used for microarray analysis. While
STAT-3 expression was not significantly affected (P > 0.05)
by LPAI H2N3 virus infection, its expression was signifi-
cantly reduced to half as much (P < 0.05) by H5N1-
tyEng91 or H5N1-tyTR05 virus in infected chicken cells
(Figure 6C). In duck cells, by contrast, STAT-3 expression
was significantly up-regulated (P < 0.05) by LPAI H2N3



Table 3 Differential expression of key immune related genes between HPAIV infected chicken and duck cells (detected
by microarray)

Gene
symbol

Gene name Entrez
Gene ID

Chicken cells Duck cells

H5N1-tyEng91 H5N1-tyTR05 H5N1-tyEng91 H5N1-tyTR05

Fold
change

Regulation Fold
change

Regulation Fold
change

Regulation Fold
change

Regulation

JAK-STAT Pathway

STAT3 signal transducer and activator
of transcription 3

420027 2.33 down 2.72 down 1.39 up - unchanged

JAK1 Janus kinase 1 (a protein
tyrosine kinase)

554219 2.79 down 3.21 down - Removed* - Removed*

IFNAR1 Interferon (alpha, beta and
omega) receptor 1

395665 8.02 down 16.65 down 13.91 up 1.37 up

PIAS2 Protein inhibitor of activated
STAT, 2

416383 5.05 down 3.86 down 1.62 up 3.7 down

Cytokines and Chemokines

IL8/ CXCLi1
(K60)

interleukin 8 395872 232.8 up 2.96 up - unchanged - unchanged

IL6 interleukin 6 (interferon,
beta 2)

395337 131.08 up 10.66 up 2.92 down - unchanged

IL10 interleukin 10 428264 1.39 up 1.6 up 1.39 down - unchanged

IL18 interleukin 18 (interferon-
gamma-inducing factor)

395312 4.7 down 4.14 down 3.02 up 2.4 up

*Transcript removed during probe masking.
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and H5N1-tyEng91 virus infection; STAT-3 expression
was not significantly affected (P > 0.05) by H5N1-tyTR05
virus infection (Figure 6D). Similarly, STAT-3 mRNA ex-
pression was down-regulated in the lung and spleen tis-
sues of chickens challenged with H5N1-tyTR05 virus
(Figure 7A) or H5N1-tyEng91 virus (data not shown).
STAT-3 mRNA expression in the lung and spleen tissues
was not significantly different (p > 0.05) in ducks chal-
lenged with H5N1-tyTR05 HPAI virus compared with
controls (Figure 7C). In summary HPAI H5N1 virus infec-
tion resulted in down-regulation of key members of the
JAK-STAT signalling pathway in chicken cells but not
duck cells.

STAT-3 appears to negatively regulate virus-induced
pro-inflammatory response and promote virus replication
in chicken and duck cells
We examined the phospho-STAT-3 protein expression
in chicken and duck cells using a monoclonal antibody
that is specific to pSTAT-3 at tyrosine-705. Phospho-
STAT-3 protein in primary duck cells was expressed
constitutively and remained strongly expressed at 24 h
of infection with H5N1-tyEng91 or H5N1-tyTR05 virus
(Figure 6E). In primary chicken cells, by contrast, phospho-
STAT-3 was weakly expressed before infection and un-
detectable at 24 hpi with H5N1-tyEng91 or H5N1-tyTR05
virus (Figure 6E).
To demonstrate a possible functional role of phospho-

STAT-3 in mediating host pro-inflammatory response
during influenza virus infection, primary chicken cells
were transiently transfected with a phospho-STAT-3
expression plasmid, and duck cells were treated with
STAT3 Inhibitor VI (S3I-201) prior to challenge with
the H5N1-tyEng91 virus. High expression of p-STAT-3
protein in chicken cells over-expressing pSTAT-3 and
reduced p-STAT-3 expression in duck cells treated
with S3I-201 at 24 h following virus infection was de-
tected by western blotting (Figure 8A).
Chicken cells transiently transfected with phospho-

STAT-3 showed a significant (p < 0.05) reduction in
LITAF, IL-6 and IL-8 mRNA expression following 24 h
of H5N1-tyEng91 virus infection (Figure 8B). In duck cells
treated with S3I-201, a significant (p < 0.05) increase
of LITAF, IL-6 and IL-8 mRNA expression was observed
at 24 h post H5N1-tyEng91 virus infection (Figure 8C).
STAT-3 over expression in chicken cells or inhibition in
duck cells had no significant (p > 0.05) effect on the ex-
pression of IFN-α expression following H5N1-tyEng91
virus infection. Chicken cells over- expressing phospho
STAT-3 showed marginal increase in viral nucleo-protein
(NP) expression (Figure 8A), significantly increased (p < 0.05)
matrix gene mRNA expression (Figure 8D) and infectious
virus release in culture supernatant (Figure 8E) at 24 h post
H5N1-tyEng91 virus infection. STAT-3 inhibition had
no effect on virus NP (Figure 8A), matrix gene expres-
sion (p > 0.05) (Figure 8D) or infectious virus production
at 24 h post H5N1-tyEng91 virus infection in duck cells.
In summary STAT-3 over-expression in chicken cells



Figure 4 Contrasting pro-inflammatory cytokine gene response between chicken and duck cells. In chicken cells at 24 h following infection
with (A) LPAI H2N3, (C) H5N1-tyEng91 or (E) H5N1-tyTR05 viruses, mRNA expression levels of IL-6, IL-8 and LITAF were significantly up-regulated. In duck
cells at 24 h following infection with (B) LPAI H2N3 (D) H5N1-tyEng91 or (F) H5N1-tyTR05 viruses, IL-6, IL-8 and LITAFmRNA levels were either significantly
down-regulated or unchanged. Relative mRNA expression was determined by real-time PCR normalised to 18S rRNA. Data points are the mean of three
biological replicates with error bars as standard deviation (*p < 0.05).
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resulted in significant reduction whereas chemical in-
hibition of STAT-3 in duck cells resulted in significant
increase in the proinflammatory gene response to H5N1
virus infection.

Discussion
Microarray global gene expression analysis is a useful
tool to gain important insights into the effects of influ-
enza virus infection on host gene expression that could
contribute to influenza pathogenesis [31]. As commer-
cial high density microarray platforms are not yet avail-
able for many avian species, cross species hybridization
using chicken oligonucleotide microarray is a useful tool
to investigate gene expression in a range of avian species
[32]. In this study, we successfully demonstrated that the
Chicken GeneChip array could be used for the analysis
of duck transcriptome as in the previous studies with
woodchuck RNA on human microarrays [33] and pig



Figure 5 Pro-inflammatory cytokine gene response to H5N1 virus challenge in chickens and ducks. In the lungs and spleens of 3-weeks-old
chickens at 24 h following infection with H5N1-tyTR05 virus, mRNA expression levels of (A) LITAF, (B) IL-6 and (C) IL-8 were significantly up-regulated
compared with mock-infected controls. (D) Increased pro-inflammatory gene response in virus infected lungs correlated with RNA accumulation
of influenza virus M-gene. In contrast, in the lungs and spleens of 4- weeks- old ducks infected with H5N1-tyTR05 virus, (H) despite viral M-gene RNA
detection, (E) LITAF mRNA expression was significantly down-regulated and expression of (F) IL-6 and (G) IL-8 unaffected in relation to
mock-infected controls. Relative mRNA expression was determined by real-time PCR normalised to 18S rRNA. Data points are the mean of
three biological replicates with error bars as standard deviation.
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RNA on human nylon microarrays [31]. However, direct
high-throughput sequencing approach (RNA-Seq) is in-
creasingly becoming popular. RNA-seq approach provides
considerable advantages for examining transcriptome fine
structure such as detection of allele-specific expression
and splice junctions [34]. However, microarrays remain
useful and accurate tools for measuring gene expression
levels especially for cross-species studies where the full
genome sequence and/or annotation are not available.
We found that influenza virus infection caused differ-

ential regulation of a greater number of genes involved
in key biological functions in chicken cells compared
with that in duck cells. Such changes in vivo could well
account for the alterations in the function of infected
cells and the pathogenesis of influenza virus in chicken.
The relatively fewer changes in differential gene
expression in infected duck cells suggest that cellular
function was affected to a lesser degree than in chickens.
HPAI viruses like H5N1 cause severe clinical disease in
chickens and cause differential regulation of many genes
involved in protein metabolism, translation, transcrip-
tion, host defence/immune response, ubiquitination and
the cell cycle [35].
Lethal influenza virus infections have been previously

shown to cause an aberrant host innate immune re-
sponse [18,36]. In this study we showed that HPAI virus
infection caused an elevated immune gene response in
chicken cells but not in duck cells. We previously
showed that a moderated pro-inflammatory response
plays an important role in mediating innate host resist-
ance of pigs to H5N1 virus infection [17]. The present
study found an elevated pro-inflammatory gene



Figure 6 Infected chicken and duck cells showed differential regulation of STAT-3. IFN-α expression was significantly up-regulated in chicken (A) and
duck (B) cells at 24 h following infection with LPAI-H2N3, H5N1-tyEng91 or H5N1-tyTR05 viruses. (C)While STAT-3 expression in chicken cells was not
significantly affected by LPAI-H2N3 virus infection it was significantly down-regulated in H5N1-tyEng91 and H5N1-tyTR05 virus infections.
(D) In contrast STAT-3 expression in duck cells was significantly up-regulated by LPAI-H2N3 or H5N1-tyEng91 viruses but was not affected
by H5N1-tyTR05 virus infection. Relative mRNA expression was determined by real-time PCR normalised to 18S rRNA. Data points are the
mean of three biological replicates with error bars as standard deviation (*p < 0.05). (E) Strong constitutive phospho-STAT-3 protein expression was detected in
duck cells which was unaffected at 24 h following infection with H5N1-tyEng91 and H5N1-tyTR05 viruses. In chicken mock-infected cells, phospho-STAT3
protein expression was scarcely detectable and remained absent at 24 h following virus infection. aLonger (5 min) exposure showing pSTAT-3 in chicken cells.
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response in infected chickens and an attenuated in-
flammatory response in ducks following 24 h of infec-
tion with HPAI virus. The unusual severity of clinical
human cases of H5N1 HPAI virus infection has been
suggested to be linked to the hyperacute dysregulation
of pro-inflammatory cytokines often referred as cyto-
kine storm [14,15,37]. Tumour Necrosis Factor alpha
(TNF-α) plays a major role in the development of clin-
ical signs like fever and contributes to the lung lesions
in humans [38] and pigs [39] during influenza virus
infections. Due to absence of a “conventional” TNF-α gene
in birds, expression of a lipopolysaccharide induced
TNF alpha factor (LITAF) was analyzed in this study.
LITAF gene has been previously shown to be very highly
up regulated along with other pro-inflammatory cytokines
following experimental inoculation of E.coli and Salmon-
ella endotoxins [40] and LPAIV [41,42]. It is likely that the
downstream pathways activated by LITAF might have a
similar function as TNF-α in other species. We found
an increased expression of LITAF in chickens and a
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down-regulated LITAF expression in ducks infected
with H5N1-tyEng91 or H5N1-tyTR05 viruses. Similar
increased expression of other pro-inflammatory cyto-
kines IL-6 and IL-8 was observed in chickens, but not
in ducks, infected with HPAIV [43].
However, pro-inflammatory response in ducks to different

H5N1 virus strains could be inherently different. For ex-
ample, a number of innate immune genes are up-regulated
in the lungs of duck infected with a HPAI H5N1 virus
(A/duck/Hubei/49/05), a LPAI H5N1 virus (A/goose/
Hubei/65/05) [44] and a HPAI H5N1 virus (A/Vietnam/
1203/04) [45]. In theory, the lack of such robust innate
immune activation in ducks in vitro and in vivo following
H5N1-tyTR05 virus could be due to inability of virus repli-
cation, or inherent differences in ducks response to differ-
ent viral strains. However, H5N1-tyTR05 virus replicates to
high titres in ducks with detectable viral shedding in oro-
pharyngeal and cloacal swabs [12] and in vitro as shown by
NP staining and M gene quantification. Hence, it is likely
that there are inherent differences in the response of ducks
to different subtypes of HPAI H5N1 viruses.
A previous study suggested that relative susceptibility

of chickens to influenza virus, compared with ducks,
could be due to the absence of RIG-I in chickens, a cyto-
plasmic RNA sensor that plays a key role in IFN medi-
ated anti-viral responses [46]. However, a reduced IFN-β
response in chicken cells in comparison with duck cells
does not always seem to be a consistent observation in
all influenza virus infections. Chicken peripheral blood
mononuclear cells (PBMC) showed up-regulation of IFN-
β while the levels of IFN-β are unaffected in duck PBMCs
infected with a low pathogenic LPAI H11N9 influenza
virus [47]. Type I interferon (IFN) response to AIV in-
fection in chicken cells is mediated through melanoma
differentiation-associated protein 5 (MDA-5) which chicken
use to sense IAV infection [48]. Role of host IFN-α/β
response in regulating virus replication is complex. In
mice IFN-α/β causes either suppression or enhance-
ment of hepatitis B virus (HBV) replication depending
on the viral load [49]. Furthermore, a high host inter-
feron IFN response to H5N1 HPAI virus may not, by itself,
be sufficient to prevent a severe disease outcome. Con-
versely, host immune responses to HPAI H5N1 virus infec-
tion may contribute to disease pathogenesis. In human
cases of HPAI H5N1 virus infection, higher levels of cyto-
kines and chemokines were found in the blood of patients
who died than those who survived [50-52].
The present study did not find any difference in IFN-α

expression in chickens and ducks following H5N1 HPAI
virus infection both in vitro and in vivo, raising a possi-
bility that an IFN- α response by itself may not be suffi-
cient to protect the host against virulent influenza virus
infection. A study found strong up-regulation of IFN-γ
mRNA in the lung and bursa of ducks but not chicken
following infection with a LPAI H7N1 virus [53]. It is
possible that IFN-γ rather than IFN- α or β could be im-
portant in protection against virulent influenza infection
in avian hosts which warrants further studies.
In summary, we showed that host pro-inflammatory re-

sponses could be a key contributing factor to the pathogen-
esis of H5N1 influenza viruses and that the fatal outcome of
H5N1 HPAI virus infection in chickens could be mediated
by hyper-acute dysregulation of pro-inflammatory cytokines
or the cytokine storm similar to human H5N1 HPAI virus
infections. Furthermore, ducks showed attenuated pro-
inflammation following infection with both the H5N1
viruses used in this study. However, to evaluate virus sub-
type specific differences, further comparative studies are re-
quired to assess the differences in cytokine response
between ducks infected with different H5N1 virus isolates.
We found that IL-18 was up-regulated in duck cells,

but was down regulated in chicken cells infected with
HPAIV. IL-18 is involved in the control of influenza
virus replication in the lungs of infected mice, especially
at an early stage of infection, through activation of the
innate immune mechanisms such as IFN and natural
killer (NK) cells [54] and improves the early defence sys-
tem by augmenting NK cell-mediated cytotoxicity. IL-18
plays a critical role in the development of protective
immunity against various intracellular pathogens includ-
ing Mycobacterium tuberculosis, Yersinia enterocolitica,
Cryptococcus neoformans and herpes simplex virus [55-58].
Recent studies demonstrated that recombinant vaccines
simultaneously expressing influenza antigens along
with IL-18 significantly enhance the protective effi-
cacy of influenza vaccines in chicken [9]. A study also
found that LPAI but not HPAI infection is associated
with enhanced NK cell response in lungs of chicken
[59], suggesting a crucial role of NK cell response in
influenza virus pathogenesis. This evidence warrants
further functional studies to investigate the mechanisms
underlying the protective role of IL-18 and NK cell re-
sponse during influenza virus infections in chicken.
The JAK-STAT signalling pathway is activated by the

type I (IFN-α and IFN-β) and type II (IFN-γ) interferons
[60] and is critical for a successful IFN-α antiviral re-
sponse against virus infections [61]. This study found
that key genes in JAK-STAT signalling pathway were
down-regulated in chicken cells but were either up-
regulated or unchanged in duck cells at 24 h following
HPAIV infection. STAT-3, a key constituent of this pathway
plays a critical role in the IFN signalling pathways and is re-
quired for a robust IFN-induced antiviral response [62].
STAT family proteins are activated by phosphorylation

by JAKs on a single tyrosine in the C- terminus at position
705 that enables their homo- or hetero-dimerization.
Dimerized STAT proteins subsequently migrate to the
nucleus and stimulate transcription [63]. Hence



Figure 7 Differential STAT-3 regulation between H5N1 virus-infected chickens and ducks. In the lungs and spleens of 3-weeks-old chickens
at 24 h following infection with H5N1-tyTR05 viruses, (A) expression of STAT-3 was significantly down-regulated whereas (B) IFN-α was significantly
up-regulated. In the lung and spleen tissues from 4- weeks- old ducks at 24 h following infection with H5N1-tyTR05 virus, (C) STAT-3 expression
was unaffected and (D) IFN-α expression was significantly up-regulated. Relative mRNA expression was determined by real-time PCR normalised
to 18S rRNA. Data points are the mean of three biological replicates with error bars as standard deviation (*p < 0.05).
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phosphorylation of STAT-3 at tyrosine- 705 is a key indi-
cator of its DNA binding ability and activity as a transcrip-
tion factor. We found that duck cells had a high basal
expression of pSTAT-3 (Tyr705) compared with chicken
cells. pSTAT-3 (Tyr705) protein expression was undetect-
able in chicken cells 24 h after infection with HPAI H5N1
virus while it was unaffected during infection of duck cells.
We could not verify STAT-3 protein expression in-vivo
due to unavailability of protein samples from HPAI in-
fected chickens and ducks. The transcriptional down-
regulation of STAT-3 with corresponding lack of pSTAT-3
protein expression in chicken cells suggests that H5N1
HPAI virus infection inhibits STAT-3 mediated gene
transcription and/or activation. An important function of
STAT-3 is its antagonistic effect on the inflammatory re-
sponse. Activation of the STAT-3 signaling pathway pro-
motes a strong anti-inflammatory response thereby
blocking the inflammatory cytokine response [64]. Hence,
it is likely that the excessive pro-inflammatory response in
H5N1 HPAI virus infected chickens could be mediated
through the inhibition of STAT-3 and a functional STAT-
3 corresponds to an attenuated pro-inflammation in
H5N1 virus infected ducks. In addition, IL-18 stimulation
results in enhanced tyrosine phosphorylation of STAT-3
[65]. In the present study IL-18 activation correlated with
increased STAT-3 phophorylation in duck cells while



Figure 8 STAT-3 appears to regulate the pro-inflammatory response and promote virus replication in H5N1 virus infected chicken and
duck cells. (A) Primary chicken embryo cells over-expressing phospho-STAT-3 showed a high phospho-STAT-3 expression while STAT-3 inhibitor
S3I-201 treatment resulted in reduced phospho-STAT-3 protein expression in duck cells at 24 h following H5N1-tyEng91 virus infection (1.0 MOI).
(B) phospho-STAT-3 over-expressing chicken cells showed a significant reduction in LITAF, IL6 and IL-8 mRNA expression with no significant
change in IFN-α expression. (C) At 24 h following H5N1-tyEng91 virus infection, in STAT-3 inhibited duck primary embryo cells, significant increase
of LITAF, IL-8 and IL-6 mRNA expression was detected with no significant change in IFN-α expression. Phospho STAT-3 over-expression in chicken
cells increased viral replication at 24 h following H5N1-tyEng91 virus infection as evidenced by increased detection of virus NP (A), matrix gene
mRNA (D) and infectious virus output in culture supernatant (E). STAT-3 inhibition did not significantly affect virus NP (A) matrix gene expression
(D) or infectious virus production (E) at 24 h following H5N1-tyEng91 virus infection in duck cells. Relative mRNA expression was determined by
real-time PCR to 18S rRNA. Data points are the mean of three biological replicates with error bars as standard deviation (*p < 0.05).
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down-regulation of IL-18 in H5N1virus infected
chicken cells correlated with reduced pSTAT-3
detection.
Chicken cells over-expressing constitutively active STAT-3

showed significantly lower LITAF, IL-6 and IL-8 mRNA
levels compared with the blank plasmid transfected cells at
24 h post H5N1-tyEng91 virus infection. Duck cells treated
with S3I-201 that inhibits the transcriptional activity of
STAT-3, resulted in increased expression of LITAF, IL-6
and IL-8 compared with control cells at 24 h post H5N1-
tyEng91 virus infection. Previous studies showed that
constitutively active STAT3 can suppress both IL-6 and
TNF-α production in lipopolysaccharide-stimulated mac-
rophages [66]. The sum of this evidence raise a strong
possibility that STAT-3 mediated gene transcription could
play a central role in suppressing pro-inflammatory re-
sponses during H5N1 virus infection in ducks. Further-
more the ability of HPAI viruses to inhibit STAT-3 in
chickens correlates with excessive pro-inflammatory re-
sponse and the development of fatal disease. Further stud-
ies would help to identify candidate genes that suppress
pro-inflammation during HPAI H5N1 virus infection and
are transcriptionally regulated by STAT-3.
Surprisingly, we found that STAT-3 over-expression

significantly increased H5N1 HPAI virus replication in
chicken cells while STAT-3 inhibition had no significant
effect on virus replication in duck cells. The increase in
influenza virus replication in chicken cells over-expressing
STAT-3 could be due to inhibition of type I IFN-mediated
antiviral response. However, STAT-3 over-expression or
inhibition did not significantly affect IFN-α mRNA expres-
sion in chicken and duck cells respectively. Conversely,
STAT3 has been suggested as an important upstream
element in type I IFN signal transduction and in the in-
duction of antiviral activities [62]. The role of STAT-3 in
virus replication appears to be complex. For example
STAT-3 induction promotes varicella-zoster virus replica-
tion [67], activates anti-hepatitis C virus (HCV) activity in
liver cells [68] and promotes HCV RNA replication [69].
Findings of the present study suggest that STAT-3 could
promote influenza virus replication in chicken cells but
not in duck cells. We showed previously that duck cells
produce significantly less infectious influenza virus com-
pared with chicken cells which correlated with rapid cell
death [20]. It is likely that other mechanisms independent
of STAT-3 could contribute to the antiviral effects ob-
served in duck cells. As STAT-3 is a transcription fac-
tor and known to mediate the expression of a variety
of genes, it is likely that STAT-3 over-expression or in-
hibition may affect a number of cellular signalling
pathways. Hence, further studies are needed to identify
candidate genes that play an important role in mediat-
ing pro-inflammation and influenza virus replication in
chickens and ducks.
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