3,694 research outputs found

    Policy Considerations for the New Zealand Natural Gas Industry

    Get PDF
    Professor Stanford Levin and Alfred Duncan undertake a study of the natural gas industry in New Zealand at a time when the two industry regulators are undertaking regulatory initiatives.The Commerce Commission is in the midst of setting their default price-quality regulatory framework that will take effect in July 2012. The Gas Industry Company the industry co-regulator has just recently issued a proposal to undertake a project to determine the current need for gas transmission investment and to develop a way for any needed investment to occur.The authors are hopeful that this study will prove useful to industry participants policymakers and also to the two industry regulators

    On the Quasi-Periodic Oscillations of Magnetars

    Full text link
    We study torsional Alfv\'en oscillations of magnetars, i.e., neutron stars with a strong magnetic field. We consider the poloidal and toroidal components of the magnetic field and a wide range of equilibrium stellar models. We use a new coordinate system (X,Y), where X=a1sinθX=\sqrt{a_1} \sin \theta, Y=a1cosθY=\sqrt{a_1}\cos \theta and a1a_1 is the radial component of the magnetic field. In this coordinate system, the 1+2-dimensional evolution equation describing the quasi-periodic oscillations, QPOs, see Sotani et al. (2007), is reduced to a 1+1-dimensional equation, where the perturbations propagate only along the Y-axis. We solve the 1+1-dimensional equation for different boundary conditions and open magnetic field lines, i.e., magnetic field lines that reach the surface and there match up with the exterior dipole magnetic field, as well as closed magnetic lines, i.e., magnetic lines that never reach the stellar surface. For the open field lines, we find two families of QPOs frequencies; a family of "lower" QPOs frequencies which is located near the X-axis and a family of "upper" frequencies located near the Y-axis. According to Levin (2007), the fundamental frequencies of these two families can be interpreted as the turning points of a continuous spectrum. We find that the upper frequencies are constant multiples of the lower frequencies with a constant equaling 2n+1. For the closed lines, the corresponding factor is n+1 . By these relations, we can explain both the lower and the higher observed frequencies in SGR 1806-20 and SGR 1900+14.Comment: 8 pages, 7 figure

    Alfv\'en Polar Oscillations of Relativistic Stars

    Full text link
    We study polar Alfv\'en oscillations of relativistic stars endowed with a strong global poloidal dipole magnetic field. Here we focus only on the axisymmetric oscillations which are studied by evolving numerically the two-dimensional perturbation equations. Our study shows that the spectrum of the polar Alfv\'{e}n oscillations is discrete in contrast to the spectrum of axial Alfv\'{e}n oscillations which is continuous. We also show that the typical fluid modes, such as the f and p modes, are not significantly affected by the presence of the strong magnetic field.Comment: 10 pages, 5 figure

    Magnetar Oscillations I: strongly coupled dynamics of the crust and the core

    Get PDF
    Quasi-Periodic Oscillations (QPOs) observed during Soft Gamma Repeaters giant flares are commonly interpreted as the torsional oscillations of magnetars. The oscillatory motion is influenced by the strong interaction between the shear modes of the crust and Alfven-like modes in the core. We study the dynamics which arises through this interaction, and present several new results: (1) We show that global {\it edge modes} frequently reside near the edges of the core Alfven continuum. (2) We compute the magnetar's oscillatory motion for realistic axisymmetric magnetic field configurations and core density profiles, but with a simplified model of the elastic crust. We show that one may generically get multiple gaps in the Alfven continuum. One obtains discrete global {\it gap modes} if the crustal frequencies belong to the gaps. (3) We show that field tangling in the core enhances the role of the core discrete Alfven modes and reduces the role of the core Alfven continuum in the overall oscillatory dynamics of the magnetar. (4) We demonstrate that the system displays transient and/or drifting QPOs when parts of the spectrum of the core Alfven modes contain discrete modes which are densely and regularly spaced in frequency. (5) We show that if the neutrons are coupled into the core Alfven motion, then the post-flare crustal motion is strongly damped and has a very weak amplitude. Thus magnetar QPOs give evidence that the proton and neutron components in the core are dynamically decoupled and that at least one of them is a quantum fluid. (6) We show that it is difficult to identify the high-frequency 625 Hz QPO as being due to the physical oscillatory mode of the magnetar, if the latter's fluid core consists of the standard proton-neutron-electron mixture and is magnetised to the same extent as the crust. (Abstract abridged)Comment: 22 pages, 22 figures, submitted to MNRA

    Magnetar Oscillations II: spectral method

    Full text link
    The seismological dynamics of magnetars is largely determined by a strong hydro-magnetic coupling between the solid crust and the fluid core. In this paper we set up a "spectral" computational framework in which the magnetar's motion is decomposed into a series of basis functions which are associated with the crust and core vibrational eigenmodes. A general-relativistic formalism is presented for evaluation of the core Alfven modes in the magnetic-flux coordinates, as well for eigenmode computation of a strongly magnetized crust of finite thickness. By considering coupling of the crustal modes to the continuum of Alfven modes in the core, we construct a fully relativistic dynamical model of the magnetar which allows: i) Fast and long simulations without numerical dissipation. ii) Very fine sampling of the stellar structure. We find that the presence of strong magnetic field in the crust results in localizing of some high-frequency crustal elasto-magnetic modes with the radial number n>1 to the regions of the crust where the field is nearly horizontal. While the hydro-magnetic coupling of these localized modes to the Alfven continuum in the core is reduced, their energy is drained on a time-scale much less than 1 second. Therefore the puzzle of the observed QPOs with frequencies larger than 600 Hz still stands.Comment: 15 pages, 11 figures, submitted to MNRA

    Shear modulus of neutron star crust

    Full text link
    Shear modulus of solid neutron star crust is calculated by thermodynamic perturbation theory taking into account ion motion. At given density the crust is modelled as a body-centered cubic Coulomb crystal of fully ionized atomic nuclei of one type with the uniform charge-compensating electron background. Classic and quantum regimes of ion motion are considered. The calculations in the classic temperature range agree well with previous Monte Carlo simulations. At these temperatures the shear modulus is given by the sum of a positive contribution due to the static lattice and a negative T\propto T contribution due to the ion motion. The quantum calculations are performed for the first time. The main result is that at low temperatures the contribution to the shear modulus due to the ion motion saturates at a constant value, associated with zero-point ion vibrations. Such behavior is qualitatively similar to the zero-point ion motion contribution to the crystal energy. The quantum effects may be important for lighter elements at higher densities, where the ion plasma temperature is not entirely negligible compared to the typical Coulomb ion interaction energy. The results of numerical calculations are approximated by convenient fitting formulae. They should be used for precise neutron star oscillation modelling, a rapidly developing branch of stellar seismology.Comment: 10 pages, 3 figures, accepted to MNRA

    Policy Considerations for the New Zealand Natural Gas Industry

    Get PDF
    Professor Stanford Levin and Alfred Duncan undertake a study of the natural gas industry in New Zealand at a time when the two industry regulators are undertaking regulatory initiatives.The Commerce Commission is in the midst of setting their default price-quality regulatory framework that will take effect in July 2012. The Gas Industry Company the industry co-regulator has just recently issued a proposal to undertake a project to determine the current need for gas transmission investment and to develop a way for any needed investment to occur.The authors are hopeful that this study will prove useful to industry participants policymakers and also to the two industry regulators

    Gravity-Driven Acceleration of the Cosmic Expansion

    Get PDF
    It is shown here that a dynamical Planck mass can drive the scale factor of the universe to accelerate. The negative pressure which drives the cosmic acceleration is identified with the unusual kinetic energy density of the Planck field. No potential nor cosmological constant is required. This suggests a purely gravity driven, kinetic inflation. Although the possibility is not ruled out, the burst of acceleration is often too weak to address the initial condition problems of cosmology. To illustrate the kinetic acceleration, three different cosmologies are presented. One such example, that of a bouncing universe, demonstrates the additional feature of being nonsingular. The acceleration is also considered in the conformally related Einstein frame in which the Planck mass is constant.Comment: 23 pages, LaTex, figures available upon request, (revisions include added references and comment on inflation) CITA-94-1

    Non-axisymmetric low frequency oscillations of rotating and magnetized neutron stars

    Full text link
    We investigate non-axisymmetric low frequency modes of a rotating and magnetized neutron star, assuming that the star is threaded by a dipole magnetic field whose strength at the stellar surface, B0B_0, is less than 1012\sim 10^{12}G, and whose magnetic axis is aligned with the rotation axis. For modal analysis, we use a neutron star model composed of a fluid ocean, a solid crust, and a fluid core, where we treat the core as being non-magnetic assuming that the magnetic pressure is much smaller than the gas pressure in the core. Here, we are interested in low frequency modes of a rotating and magnetized neutron star whose oscillation frequencies are similar to those of toroidal crust modes of low spherical harmonic degree and low radial order. For a magnetic field of B0107B_0\sim 10^7G, we find Alfv\'en waves in the ocean have similar frequencies to the toroidal crust modes, and we find no rr-modes confined in the ocean for this strength of the field. We calculate the toroidal crustal modes, the interfacial modes peaking at the crust/core interface, and the core inertial modes and rr-modes, and all these modes are found to be insensitive to the magnetic field of strength B_0\ltsim10^{12}G. We find the displacement vector of the core l=ml^\prime=|m| rr-modes have large amplitudes around the rotation axis at the stellar surface even in the presence of a surface magnetic field B01010B_0\sim10^{10}G, where ll^\prime and mm are the spherical harmonic degree and the azimuthal wave number of the rr-modes, respectively. We suggest that millisecond X-ray variations of accretion powered X-ray millisecond pulsars can be used as a probe into the core rr-modes destabilized by gravitational wave radiation.Comment: 15pages, 7 figure

    CMS computing operations during run 1

    Get PDF
    During the first run, CMS collected and processed more than 10B data events and simulated more than 15B events. Up to 100k processor cores were used simultaneously and 100PB of storage was managed. Each month petabytes of data were moved and hundreds of users accessed data samples. In this document we discuss the operational experience from this first run. We present the workflows and data flows that were executed, and we discuss the tools and services developed, and the operations and shift models used to sustain the system. Many techniques were followed from the original computing planning, but some were reactions to difficulties and opportunities. We also address the lessons learned from an operational perspective, and how this is shaping our thoughts for 2015
    corecore