177 research outputs found

    Phasic spiking in vasopressin neurons:How and Why

    Get PDF

    Phasic Firing in Vasopressin Cells: Understanding Its Functional Significance through Computational Models

    Get PDF
    Vasopressin neurons, responding to input generated by osmotic pressure, use an intrinsic mechanism to shift from slow irregular firing to a distinct phasic pattern, consisting of long bursts and silences lasting tens of seconds. With increased input, bursts lengthen, eventually shifting to continuous firing. The phasic activity remains asynchronous across the cells and is not reflected in the population output signal. Here we have used a computational vasopressin neuron model to investigate the functional significance of the phasic firing pattern. We generated a concise model of the synaptic input driven spike firing mechanism that gives a close quantitative match to vasopressin neuron spike activity recorded in vivo, tested against endogenous activity and experimental interventions. The integrate-and-fire based model provides a simple physiological explanation of the phasic firing mechanism involving an activity-dependent slow depolarising afterpotential (DAP) generated by a calcium-inactivated potassium leak current. This is modulated by the slower, opposing, action of activity-dependent dendritic dynorphin release, which inactivates the DAP, the opposing effects generating successive periods of bursting and silence. Model cells are not spontaneously active, but fire when perturbed by random perturbations mimicking synaptic input. We constructed one population of such phasic neurons, and another population of similar cells but which lacked the ability to fire phasically. We then studied how these two populations differed in the way that they encoded changes in afferent inputs. By comparison with the non-phasic population, the phasic population responds linearly to increases in tonic synaptic input. Non-phasic cells respond to transient elevations in synaptic input in a way that strongly depends on background activity levels, phasic cells in a way that is independent of background levels, and show a similar strong linearization of the response. These findings show large differences in information coding between the populations, and apparent functional advantages of asynchronous phasic firing

    Spike Triggered Hormone Secretion in Vasopressin Cells; a Model Investigation of Mechanism and Heterogeneous Population Function

    Get PDF
    Vasopressin neurons generate distinctive phasic patterned spike activity in response to elevated extracellular osmotic pressure. These spikes are generated in the cell body and are conducted down the axon to the axonal terminals where they trigger Ca²⁺ entry and subsequent exocytosis of hormone-containing vesicles and secretion of vasopressin. This mechanism is highly non-linear, subject to both frequency facilitation and fatigue, such that the rate of secretion depends on both the rate and patterning of the spike activity. Here we used computational modelling to investigate this relationship and how it shapes the overall response of the neuronal population. We generated a concise single compartment model of the secretion mechanism, fitted to experimentally observed profiles of facilitation and fatigue, and based on representations of the hypothesised underlying mechanisms. These mechanisms include spike broadening, Ca²⁺ channel inactivation, a Ca²⁺ sensitive K⁺ current, and releasable and reserve pools of vesicles. We coupled the secretion model to an existing integrate-and-fire based spiking model in order to study the secretion response to increasing synaptic input, and compared phasic and non-phasic spiking models to assess the functional value of the phasic spiking pattern. The secretory response of individual phasic cells is very non-linear, but the response of a heterogeneous population of phasic cells shows a much more linear response to increasing input, matching the linear response we observe experimentally, though in this respect, phasic cells have no apparent advantage over non-phasic cells. Another challenge for the cells is maintaining this linear response during chronic stimulation, and we show that the activity-dependent fatigue mechanism has a potentially useful function in helping to maintain secretion despite depletion of stores. Without this mechanism, secretion in response to a steady stimulus declines as the stored content declines

    Suppression of Lymphoma and Epithelial Malignancies Effected by Interferon γ

    Get PDF
    The immunosurveillance of transformed cells by the immune system remains one of the most controversial and poorly understood areas of immunity. Gene-targeted mice have greatly aided our understanding of the key effector molecules in tumor immunity. Herein, we describe spontaneous tumor development in gene-targeted mice lacking interferon (IFN)-γ and/or perforin (pfp), or the immunoregulatory cytokines, interleukin (IL)-12, IL-18, and tumor necrosis factor (TNF). Both IFN-γ and pfp were critical for suppression of lymphomagenesis, however the level of protection afforded by IFN-γ was strain specific. Lymphomas arising in IFN-γ-deficient mice were very nonimmunogenic compared with those derived from pfp-deficient mice, suggesting a comparatively weaker immunoselection pressure by IFN-γ. Single loss of IL-12, IL-18, or TNF was not sufficient for spontaneous tumor development. A significant incidence of late onset adenocarcinoma observed in both IFN-γ– and pfp-deficient mice indicated that some epithelial tissues were also subject to immunosurveillance

    Control of hypothalamic-pituitary-adrenal stress axis activity by the intermediate conductance calcium-activated potassium channel, SK4

    Get PDF
    NON-TECHNICAL SUMMARY: Our ability to respond to stress is critically dependent upon the release of the stress hormone adrenocorticotrophic hormone (ACTH) from corticotroph cells of the anterior pituitary gland. ACTH release is controlled by the electrical properties of corticotrophs that are determined by the movement of ions through channel pores in the plasma membrane. We show that a calcium-activated potassium ion channel called SK4 is expressed in corticotrophs and regulates ACTH release. We provide evidence of how SK4 channels control corticotroph function, which is essential for understanding homeostasis and for treating stress-related disorders. ABSTRACT: The anterior pituitary corticotroph is a major control point for the regulation of the hypothalamic–pituitary–adrenal (HPA) axis and the neuroendocrine response to stress. Although corticotrophs are known to be electrically excitable, ion channels controlling the electrical properties of corticotrophs are poorly understood. Here, we exploited a lentiviral transduction system to allow the unequivocal identification of live murine corticotrophs in culture. We demonstrate that corticotrophs display highly heterogeneous spontaneous action-potential firing patterns and their resting membrane potential is modulated by a background sodium conductance. Physiological concentrations of corticotrophin-releasing hormone (CRH) and arginine vasopressin (AVP) cause a depolarization of corticotrophs, leading to a sustained increase in action potential firing. A major component of the outward potassium conductance was mediated via intermediate conductance calcium-activated (SK4) potassium channels. Inhibition of SK4 channels with TRAM-34 resulted in an increase in corticotroph excitability and exaggerated CRH/AVP-stimulated ACTH secretion in vitro. In accordance with a physiological role for SK4 channels in vivo, restraint stress-induced plasma ACTH and corticosterone concentrations were significantly enhanced in gene-targeted mice lacking SK4 channels (Kcnn4(−/−)). In addition, Kcnn4(−/−) mutant mice displayed enhanced hypothalamic c-fos and nur77 mRNA expression following restraint, suggesting increased neuronal activation. Thus, stress hyperresponsiveness observed in Kcnn4(−/−) mice results from enhanced secretagogue-induced ACTH output from anterior pituitary corticotrophs and may also involve increased hypothalamic drive, thereby suggesting an important role for SK4 channels in HPA axis function

    Cognitive behavioural therapy for adults with dissociative seizures (CODES): a pragmatic, multicentre, randomised controlled trial.

    Get PDF
    BACKGROUND: Dissociative seizures are paroxysmal events resembling epilepsy or syncope with characteristic features that allow them to be distinguished from other medical conditions. We aimed to compare the effectiveness of cognitive behavioural therapy (CBT) plus standardised medical care with standardised medical care alone for the reduction of dissociative seizure frequency. METHODS: In this pragmatic, parallel-arm, multicentre randomised controlled trial, we initially recruited participants at 27 neurology or epilepsy services in England, Scotland, and Wales. Adults (≥18 years) who had dissociative seizures in the previous 8 weeks and no epileptic seizures in the previous 12 months were subsequently randomly assigned (1:1) from 17 liaison or neuropsychiatry services following psychiatric assessment, to receive standardised medical care or CBT plus standardised medical care, using a web-based system. Randomisation was stratified by neuropsychiatry or liaison psychiatry recruitment site. The trial manager, chief investigator, all treating clinicians, and patients were aware of treatment allocation, but outcome data collectors and trial statisticians were unaware of treatment allocation. Patients were followed up 6 months and 12 months after randomisation. The primary outcome was monthly dissociative seizure frequency (ie, frequency in the previous 4 weeks) assessed at 12 months. Secondary outcomes assessed at 12 months were: seizure severity (intensity) and bothersomeness; longest period of seizure freedom in the previous 6 months; complete seizure freedom in the previous 3 months; a greater than 50% reduction in seizure frequency relative to baseline; changes in dissociative seizures (rated by others); health-related quality of life; psychosocial functioning; psychiatric symptoms, psychological distress, and somatic symptom burden; and clinical impression of improvement and satisfaction. p values and statistical significance for outcomes were reported without correction for multiple comparisons as per our protocol. Primary and secondary outcomes were assessed in the intention-to-treat population with multiple imputation for missing observations. This trial is registered with the International Standard Randomised Controlled Trial registry, ISRCTN05681227, and ClinicalTrials.gov, NCT02325544. FINDINGS: Between Jan 16, 2015, and May 31, 2017, we randomly assigned 368 patients to receive CBT plus standardised medical care (n=186) or standardised medical care alone (n=182); of whom 313 had primary outcome data at 12 months (156 [84%] of 186 patients in the CBT plus standardised medical care group and 157 [86%] of 182 patients in the standardised medical care group). At 12 months, no significant difference in monthly dissociative seizure frequency was identified between the groups (median 4 seizures [IQR 0-20] in the CBT plus standardised medical care group vs 7 seizures [1-35] in the standardised medical care group; estimated incidence rate ratio [IRR] 0·78 [95% CI 0·56-1·09]; p=0·144). Dissociative seizures were rated as less bothersome in the CBT plus standardised medical care group than the standardised medical care group (estimated mean difference -0·53 [95% CI -0·97 to -0·08]; p=0·020). The CBT plus standardised medical care group had a longer period of dissociative seizure freedom in the previous 6 months (estimated IRR 1·64 [95% CI 1·22 to 2·20]; p=0·001), reported better health-related quality of life on the EuroQoL-5 Dimensions-5 Level Health Today visual analogue scale (estimated mean difference 6·16 [95% CI 1·48 to 10·84]; p=0·010), less impairment in psychosocial functioning on the Work and Social Adjustment Scale (estimated mean difference -4·12 [95% CI -6·35 to -1·89]; p<0·001), less overall psychological distress than the standardised medical care group on the Clinical Outcomes in Routine Evaluation-10 scale (estimated mean difference -1·65 [95% CI -2·96 to -0·35]; p=0·013), and fewer somatic symptoms on the modified Patient Health Questionnaire-15 scale (estimated mean difference -1·67 [95% CI -2·90 to -0·44]; p=0·008). Clinical improvement at 12 months was greater in the CBT plus standardised medical care group than the standardised medical care alone group as reported by patients (estimated mean difference 0·66 [95% CI 0·26 to 1·04]; p=0·001) and by clinicians (estimated mean difference 0·47 [95% CI 0·21 to 0·73]; p<0·001), and the CBT plus standardised medical care group had greater satisfaction with treatment than did the standardised medical care group (estimated mean difference 0·90 [95% CI 0·48 to 1·31]; p<0·001). No significant differences in patient-reported seizure severity (estimated mean difference -0·11 [95% CI -0·50 to 0·29]; p=0·593) or seizure freedom in the last 3 months of the study (estimated odds ratio [OR] 1·77 [95% CI 0·93 to 3·37]; p=0·083) were identified between the groups. Furthermore, no significant differences were identified in the proportion of patients who had a more than 50% reduction in dissociative seizure frequency compared with baseline (OR 1·27 [95% CI 0·80 to 2·02]; p=0·313). Additionally, the 12-item Short Form survey-version 2 scores (estimated mean difference for the Physical Component Summary score 1·78 [95% CI -0·37 to 3·92]; p=0·105; estimated mean difference for the Mental Component Summary score 2·22 [95% CI -0·30 to 4·75]; p=0·084), the Generalised Anxiety Disorder-7 scale score (estimated mean difference -1·09 [95% CI -2·27 to 0·09]; p=0·069), and the Patient Health Questionnaire-9 scale depression score (estimated mean difference -1·10 [95% CI -2·41 to 0·21]; p=0·099) did not differ significantly between groups. Changes in dissociative seizures (rated by others) could not be assessed due to insufficient data. During the 12-month period, the number of adverse events was similar between the groups: 57 (31%) of 186 participants in the CBT plus standardised medical care group reported 97 adverse events and 53 (29%) of 182 participants in the standardised medical care group reported 79 adverse events. INTERPRETATION: CBT plus standardised medical care had no statistically significant advantage compared with standardised medical care alone for the reduction of monthly seizures. However, improvements were observed in a number of clinically relevant secondary outcomes following CBT plus standardised medical care when compared with standardised medical care alone. Thus, adults with dissociative seizures might benefit from the addition of dissociative seizure-specific CBT to specialist care from neurologists and psychiatrists. Future work is needed to identify patients who would benefit most from a dissociative seizure-specific CBT approach. FUNDING: National Institute for Health Research, Health Technology Assessment programme

    First Neutrino Observations from the Sudbury Neutrino Observatory

    Get PDF
    The first neutrino observations from the Sudbury Neutrino Observatory are presented from preliminary analyses. Based on energy, direction and location, the data in the region of interest appear to be dominated by 8B solar neutrinos, detected by the charged current reaction on deuterium and elastic scattering from electrons, with very little background. Measurements of radioactive backgrounds indicate that the measurement of all active neutrino types via the neutral current reaction on deuterium will be possible with small systematic uncertainties. Quantitative results for the fluxes observed with these reactions will be provided when further calibrations have been completed.Comment: Latex, 7 pages, 10 figures, Invited paper at Neutrino 2000 Conference, Sudbury, Canada, June 16-21, 2000 to be published in the Proceeding
    corecore