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Abstract
Magnocellular oxytocin and vasopressin neurons of the hy-
pothalamus project to the posterior pituitary where they
secrete their peptide hormone signals directly into the blood-
stream. Their large anatomically distinct secretory mecha-
nisms provide a uniquely accessible system in which to unite
experimental and modelling approaches in the investigation of
how input signals and electrophysiological properties of neu-
rons relate to physiological function. We describe how the
mechanisms have been translated and assembled into a
mathematical model representation that can explain and
simulate the complex and highly non-linear stimulus-secretion
coupling of these neurons, and how this model has been
applied to further understand these systems.
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Introduction
It is often forgotten that the output signal of most neu-
rons is encoded, not in their action potentials or spiking,
but in spike triggered secretion.Most commonly this is in
synaptic transmission, where an axon conducted spike
triggers Ca2þ entry and exocytosis of neurotransmitter
containing vesicles, docked at the axonal terminal
www.sciencedirect.com Cu
membrane. Secretion here is in small amounts and fol-
lows a rapid time course, making it very difficult to
measure. The neuroendocrine cells of the hypothalamus
use a similar mechanism of spike triggered exocytosis to
secrete neuropeptides [1], but in larger quantities, and
into spaces where they are subject to less rapid clearance.
Neuroendocrine oxytocin and vasopressin neurons in
particular, project directly to the posterior pituitary,

where they secrete into blood plasma, forming a signal
which is much more accessible to experimental mea-
surement both in vitro and in vivo. This combined with
the accessibility of these neurons to electrophysiology,
where their cell bodies uniquely populate the supraoptic
nucleus (SON) of the hypothalamus, makes them an
excellent model for understanding stimulus-secretion
coupling in neurons and other cells.

As well as peripheral secretion of oxytocin and vaso-
pressin at the posterior pituitary, oxytocin and vaso-

pressin neurons are known for dendritic secretion,
generating autocrine, paracrine, and further signals, that
act to modulate themselves, coordinate as a network
with their neighbours, and signal other brain regions
beyond. The focus here is on the modelling of the pe-
ripheral secretion signal, but there are likely to many
common mechanisms and dynamics. Modelling of the
vasopressin neurons’ distinctive phasic firing pattern
and its interaction with the secretory mechanisms has
been recently reviewed [2]. Dendritic secretion has
been modelled in a simple form for its role in coordi-

nating synchronised pulse generation in oxytocin neu-
rons [3] in the milk ejection reflex.
Data sources
The major source of quantitative data for the modelling

is in vitro experiments performed in the 1970s and 80s
[4e7] where extracted posterior pituitary glands were
used to measure secretion into a dish in response to
electrical stimulation via an electrode, testing varied
frequencies, durations, and patterns of electrical pulses
intended to approximate the spikes conducted to the
secretory terminals in vivo. Two major properties of the
stimulus-secretion coupling were identified here: fre-
quency facilitation, and fatigue (Figure 1). The amount of
secretion is dependent not only on the number of spikes
but also on their frequency, with the amount of secretion
per spike increasing as the frequency increases. This
rrent Opinion in Endocrine and Metabolic Research 2022, 24:100341
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Figure 1

Frequency facilitation and fatigue in the stimulus-secretion coupling. Frequency dependence was investigated in vitro [7] by stimulating posterior pituitary
glands with 156 pulses at four different frequencies and measuring the hormone secretion by radioimmunoassay. Facilitation peaks at 13Hz for vaso-
pressin but continues to rise for oxytocin. Fatigue was measured [6] by stimulating at 13Hz for four different durations. Vasopressin shows a fall in
secretion rate, while oxytocin shows no fatigue on this timescale.

2 Mathematical Modelling of Endocrine Systems
facilitation effect varies between oxytocin and vaso-
pressin. In oxytocin, secretion per spike continues to
rise, although at a slowing rate, up to stimulation fre-

quencies of 50 Hz. In vasopressin it peaks at around
13 Hz before gradually falling again.

Subject to prolonged stimulation over tens of seconds,
the amount of secretion per spike, even at a fixed fre-
quency, declines due to some mechanism of fatigue.
Fatigue here refers to a time or use dependent reduction
in the secretion response to a spiking stimulus. Again
this varies, and is a much stronger effect in vasopressin
than oxytocin. The combined effects of facilitation and
fatigue result in a highly non-linear coupling between

spiking and the rate of secretion, sensitive to both the
rate and pattern of spiking activity. Similar properties of
facilitation and fatigue have been detected in synaptic
transmission [8]. This non-linearity is what makes
considering secretion as the functional output signal
important. If there was a simple linear relationship, of
one unit of secretion per spike, then this distinction
would be trivial. These dynamics make secretion sen-
sitive to burst patterned spiking, which occurs in many
types of neurons.

The data in these experiments gives a quantitative
measure of the rate of secretion per spike, and how it
changes. Modelling has two goals here; to explain these
properties, based on knowledge of the underlying
mechanisms, and to be able to simulate them, towards
understanding their role in physiological function. Par-
allel work has developed robust integrate-and-fire based
spiking models for vasopressin and oxytocin neurons
[9,10]. Building a coupled model of spiking and
Current Opinion in Endocrine and Metabolic Research 2022, 24:100341
secretion provides most of what we need to link the
input and output signals of these neurons.
Modelling and mechanisms
Modelling attempts focussed initially (RF Durie, PhD
thesis, University of Edinburgh, 2008, https://era.ed.ac.
uk/handle/1842/2220) on the dynamics of the secretory
vesicle containing stores. Vesicles are synthesised and

packaged in the cell body before being transported down
the axon towards secretory terminals. At each terminal a
small pool of vesicles is docked close to the secretory
membrane ready for release via Ca2þ triggered exocytosis.
These small pools, repeated over many thousands of
secretory terminals, collectively form the readily releasable
(or just releasable) pool. A second and much larger reserve
pool is more abstract and less well anatomically defined,
but accounts for the vesicles, which are in the vicinity of
the releasable pools or being transported towards them. A
simple model uses single variables to represent the con-

tent of each of these pools. The rate of secretion is a
function of spiking activity, and the content of the
releasable pool, depleting that pool. The releasable pool is
refiled at some fixed, or activity dependent, rate from the
reserve pool. This is capable of explaining fatigue if the
rate of depletion exceeds the rate of refilling, depleting
the releasable pool, and thus reducing the rate of secretion
per spike until reduced demand allows refilling.

However, using reasonable parameters, based on esti-
mates of the size of these pools, and the rate of secretion

under stimulation, this mechanism is too slow to explain
the relatively rapid fatigue observed in vasopressin
neurons. Fatigue, and also facilitation, require some
change in the coupling between spiking and the rate of
www.sciencedirect.com
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vesicle exocytosis. Exocytosis is dependent on available
vesicles, Ca2þ receptors, and Ca2þ. Thus, the other
important dynamics are in the relationship between
spiking and Ca2þ entry. Spikes generated in the cell
body are propagated down the axon through a process of
regeneration. The spikes generated at the secretory
terminal are subject to local excitability and ion channel
properties, and can fail to propagate, or change in

waveform. The best candidate mechanism for facilita-
tion is frequency-dependent spike broadening [11].
Longer lasting, broader spikes produce more Ca2þ entry
per spike, therefore increasing secretion per spike.
Other known modulatory mechanisms, including Ca2þ-
dependent inactivation of Ca2þ channels [12], and a
hyperpolarising Ca2þ-activated Kþ conductance [13],
act to reduce Ca2þ entry per spike.

Ca2þ dynamics are highly complex, but can be simplified
for modelling using compartments representing Ca2þ
signals (and responses) with varied magnitude and time
course parameters. These represent variations in the
relationship between the sites of Ca2þ entry and re-
ceptors. If the receptors are close to the Ca2þ channels
(as are the receptors that trigger exocytosis) then they
experience a fast changing high magnitude Ca2þ signal.
If the receptors are further away or more widely
distributed, then they experience a lower magnitude
but slower changing (longer lasting) intracellular
Ca2þ signal.
The working model
Another earlier modelling attempt [14], instead of
basing on the underlying mechanisms, directly simu-
lates the frequency response profile, and the rate of
Figure 2

Coupled spiking, secretion, and plasma diffusion model. The secretion mode
secretion properties by combining representations of the vesicle pools and th
terminals. A few parameter changes, mainly reducing the Ca2+ dependent neg
secretion properties. The plasma diffusion model [17] accurately translates th
match to experimental data.

www.sciencedirect.com Cu
propagation failure, as a function of spike interval. It
matches vasopressin concentrations in set conditions
but lacks flexibility and a close quantitative match to the
experimental data.

The current working model [15] adds to the releasable
and reserve pools of Durie’s work a fast Ca2þ variable, a
slow Ca2þ variable, and a variable representing spike
broadening (Figure 2). The complex frequency
dependence, observed especially in vasopressin neu-
rons, peaking at w13Hz before falling again, is
modelled by spike broadening driven facilitation of
Ca2þ entry, opposed by a fast Ca2þ driven negative

feedback control of Ca2þ entry. Any effects which
directly track spike frequency must by nature be driven
by fast changing signals. Ca2þ entry itself is repre-
sented by a factor in how each Ca2þ variable is incre-
mented by a spike.

The rate of exocytosis is also driven by the fast Ca2þ
variable. The Ca2þ binding and activation of exocytosis
is thought to be cooperative [16] and the secretion rate
factor, in the vasopressin model, uses the cube of the
fast Ca2þ signal, which acts to match the initially highly
non-linear relationship between spike frequency and
secretion rate, particularly at low frequencies. The slow
Ca2þ variable is used as a second negative feedback
control on Ca2þ entry, representing an increased rate of
spike propagation failure generated by the Ca2þ-acti-
vated Kþ conductance. This acts to model the rela-
tively fast fatigue effect observed mainly in vasopressin
neurons. Its action combines with depletion of the
releasable pool, but dominates on shorter (tens of
seconds) timescales.
l [15], taking model generated spike events as an input, matches the
e competing excitatory and inhibitory Ca2+ dynamics at the secretory
ative feedbacks, are sufficient to adapt between vasopressin and oxytocin
e secretion rate into plasma concentration, giving a strong quantitative

rrent Opinion in Endocrine and Metabolic Research 2022, 24:100341
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4 Mathematical Modelling of Endocrine Systems
These components, using five variables driven by dif-
ferential equations [15], are sufficient to qualitatively
and quantitatively match the observed frequency
dependence and fatigue properties, and most impor-
tantly to match the resulting sensitivity of secretion to
spike patterning as well as spike rate. The first inter-
esting result, testing the role of the model’s compo-
nents, was that the ‘artificial fatigue’ generated by

inhibiting spike transmission (the model’s slow Ca2þ
inhibition of Ca2þ entry), acts to resist depletion of the
releasable store (i.e. real fatigue). The secretion rate is
dependent on the releasable pool and thus protecting it
maintains a more consistent signal response, purely
dependent on the current input signal.
Broader application and adaptation
The model was originally developed for vasopressin
neurons. An interesting challenge to its robustness was
adapting it to oxytocin neurons [17], which have very
similar secretory mechanisms but show different fre-
quency facilitation and fatigue properties. The oxytocin
frequency response has a similar sensitivity to spike
broadening, but appears to have less opposing inactiva-
tion of Ca2þ channels, resulting in a rate of secretion per

spike which continues to increase up to very high spike
rates. This likely corresponds to the high frequency
spike activity observed in the oxytocin driven milk
ejection reflex. Oxytocin neurons also show a much
smaller fatigue effect, suggesting less Ca2þ driven
hyperpolarisation of the secretory terminals and spike
propagation failure.

In the model, these translate into reduced negative
feedback control of Ca2þ entry by both the fast and slow
Ca2þ variables. A less non-linear relationship between
secretion rate and spike frequency, also suggests less

cooperativity in the Ca2þ binding and activation of
exocytosis, and so this is reduced to use the square
instead of the cube of the fast Ca2þ variable. There is no
specific experimental data available, but the modelling
predicts differences in this mechanism [16] between
vasopressin and oxytocin neurons. The parameters were
precisely fitted by simulating the in vitro experiments
that quantified these effects (Figure 1), testing varied
frequencies and durations of spike stimulation.

A robust quantitatively fitted secretion model provides

the opportunity to bridge experimental data, predicting
plasma hormone concentrations from spike activity, and
vice versa. The final element is a model of plasma
diffusion and clearance, based on experiments that
quantified these by infusing oxytocin, and measuring
changing plasma oxytocin concentrations under various
surgical interventions [18,19]. The model uses two
compartments, for the extravascular fluid (EVF) and
plasma. The hormone is secreted into the plasma, from
where it acts and is cleared, but also diffuses, dependent
Current Opinion in Endocrine and Metabolic Research 2022, 24:100341
on concentration gradient, between the plasma and EVF,
slowing the rate of change of the plasma signal. The
model uses the experimental data’s accurate measures
of the volumes, and diffusion and clearance rates, to
translate the secretion model’s rate output into experi-
mentally accessible plasma concentration.

The integrated oxytocin spiking, secretion, and plasma

model was first tested, and calibrated, matching the
plasma response to injections of cholecystokinin (CCK)
[17], a gut secreted signal which produces an excitatory
spiking response in oxytocin neurons and a rapid
elevation of oxytocin plasma concentration. The proper
test of its quantitative fit was using different experi-
mental data measuring the oxytocin plasma response to
an excitatory osmotic stimulus, attempting to match this
with no change to the model. This required a newmodel
of how the osmotic input signal and fluid volumes
respond to intra-venous or intra-peritoneal injection of

saline, but it was able to closely match the output
plasma signal, and develop understanding of how the
plasma volume and osmo-sensitive components of the
input signals interact [20].

The integrated input signal, spiking, secretion, and
plasma models have already been extended to model
populations of neurons, demonstrating the functional
and physiological benefits of population heterogeneity
[21]. Ongoing work is attempting to understand how the
populations are coordinated to maintain long term

function, and subject to plasticity to fulfil multiple roles.
The secretion model is the vital part in being able to
bridge experimentally accessible data, linking physio-
logical input and output signals. With new techniques
making detailed Ca2þ and secretion data more acces-
sible, it can hopefully be applied to other neuroendo-
crine cells, and beyond.
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