831 research outputs found

    Development and critical evaluation of a generic 2-D agro-hydrological model (SMCR_N) for the responses of crop yield and nitrogen composition to nitrogen fertilizer

    Get PDF
    Models play an important role in optimizing fertilizer use in agriculture to maintain sustainable crop production and to minimize the risk to the environment. In this study, we present a new Simulation Model for Crop Response to Nitrogen fertilizer (SMCR_N). The SMCR_N model, based on the recently developed model EU-Rotate_N for the N-economies of a wide range of crops and cropping systems, includes new modules for the estimation of N in the roots and an associated treatment of the recovery of soil mineral N by crops, for the reduction of growth rates by excessive fertilizer-N, and for the N mineralization from soil organic matter. The validity of the model was tested against the results from 32 multi-level fertilizer experiments on 16 different crop species. For this exercise none of the coefficients or parameters in the model was adjusted to improve the agreement between measurement and simulation. Over the practical range of fertilizer-N levels model predictions were, with few exceptions, in good agreement with measurements of crop dry weight (excluding fibrous roots) and its %N. The model considered that the entire reduction of soil inorganic N during growth was due to the sum of nitrate leaching, retention of N in fibrous roots and N uptake by the rest of the plant. The good agreement between the measured and simulated uptakes suggests that in this arable soil, losses of N from other soil processes were small. At high levels of fertilizer-N yields were dominated by the negative osmotic effect of fertilizer-N and model predictions for some crops were poor. However, the predictions were significantly improved by using a different value for the coefficient defining the osmotic effect for saline sensitive crops. The developed model SMCR_N uses generally readily available inputs, and is more mechanistic than most agronomic models and thus has the potential to be used as a tool for optimizing fertilizer practice

    A unifying concept for the dependence of whole-crop N:P ratio on biomass : theory and experiment

    Get PDF
    Background and Aims: Numerous estimates have been made of the concentrations of N and P required for good growth of crop species but they have not been defined by any unifying model. The aim of the present study was to develop such a model for the dependence of the N : P ratio on crop mass, to test its validity and to use it to identify elements of similarity between different crop species and wild plants. Methods: A model was derived between plant N : P ratio (Rw) and its dry biomass per unit area (W) during growth with near optimum nutrition by considering that plants consist of growth-related tissue and storage-related tissue with N : P ratios Rg and Rs, respectively. Testing and calibration against experimental data on different crop species led to a simple equation between Rw and W which was tested against independent experimental data. Key Results: The validity of the model and equation was supported by 365 measurements of Rw in 38 field experiments on crops. Rg and Rs remained approximately constant throughout growth, with average values of 11·8 and 5·8 by mass. The model also approximately predicted the relationships between leaf N and P concentrations in 124 advisory estimates on immature tissues and in 385 wild species from published global surveys. Conclusions: The N : P ratio of the biomass of very different crops, during growth with near optimum levels of nutrients, is defined entirely in terms of crop biomass, an average N : P ratio of the storage/structure-related tissue of the crop and an average N : P ratio of the growth-related tissue. The latter is similar to that found in leaves of many wild plant species, and even micro-organisms and terrestrial and freshwater autotrophs

    A novel method of supplying nutrients permits predictable shoot growth and root: shoot ratios of pre-transplant bedding plants

    Get PDF
    BACKGROUND AND AIMS: Growth of bedding plants, in small peat plugs, relies on nutrients in the irrigation solution. The object of the study was to find a way of modifying the nutrient supply so that good-quality seedlings can be grown rapidly and yet have the high root : shoot ratios essential for efficient transplanting. METHODS: A new procedure was devised in which the concentrations of nutrients in the irrigation solution were modified during growth according to changing plant demand, instead of maintaining the same concentrations throughout growth. The new procedure depends on published algorithms for the dependence of growth rate and optimal plant nutrient concentrations on shoot dry weight Ws (g m–2), and on measuring evapotranspiration rates and shoot dry weights at weekly intervals. Pansy, Viola tricola ‘Universal plus yellow’ and petunia, Petunia hybrida ‘Multiflora light salmon vein’ were grown in four independent experiments with the expected optimum nutrient concentration and fractions of the optimum. Root and shoot weights were measured during growth. KEY RESULTS: For each level of nutrient supply Ws increased with time (t) in days, according to the equation {Delta}Ws/{Delta}t=K2Ws/(100+Ws) in which the growth rate coefficient (K2) remained approximately constant throughout growth. The value of K2 for the optimum treatment was defined by incoming radiation and temperature. The value of K2 for each sub-optimum treatment relative to that for the optimum treatment was logarithmically related to the sub-optimal nutrient supply. Provided the aerial environment was optimal, Rsb/Ro{approx}Wo/Wsb where R is the root : shoot ratio, W is the shoot dry weight, and sb and o indicate sub-optimum and optimum nutrient supplies, respectively. Sub-optimal nutrient concentrations also depressed shoot growth without appreciably affecting root growth when the aerial environment was non-limiting. CONCLUSION: The new procedure can predict the effects of nutrient supply, incoming radiation and temperature on the time course of shoot growth and the root : shoot ratio for a range of growing conditions

    Subcontractors' liability for project delays

    Get PDF
    The paper addresses the contractual problem of how main contractors pass on liability for project delays to their subcontractors; a topic that is difficult and has not been grasped properly in the previous literature. The survey reveals that the ‘normal’ approach is illogical and that the issue is misunderstood by a significant proportion of practitioners in the UK

    RNA:protein ratio of the unicellular organism as a characteristic of phosphorous and nitrogen stoichiometry and of the cellular requirement of ribosomes for protein synthesis

    Get PDF
    Background Mean phosphorous:nitrogen (P:N) ratios and relationships of P:N ratios with the growth rate of organisms indicate a surprising similarity among and within microbial species, plants, and insect herbivores. To reveal the cellular mechanisms underling this similarity, the macromolecular composition of seven microorganisms and the effect of specific growth rate (SGR) on RNA:protein ratio, the number of ribosomes, and peptide elongation rate (PER) were analyzed under different conditions of exponential growth. Results It was found that P:N ratios calculated from RNA and protein contents in these particular organisms were in the same range as the mean ratios reported for diverse organisms and had similar positive relationships with growth rate, consistent with the growth-rate hypothesis. The efficiency of protein synthesis in microorganisms is estimated as the number of active ribosomes required for the incorporation of one amino acid into the synthesized protein. This parameter is calculated as the SGR:PER ratio. Experimental and theoretical evidence indicated that the requirement of ribosomes for protein synthesis is proportional to the RNA:protein ratio. The constant of proportionality had the same values for all organisms, and was derived mechanistically from the characteristics of the protein-synthesis machinery of the cell (the number of nucleotides per ribosome, the average masses of nucleotides and amino acids, the fraction of ribosomal RNA in the total RNA, and the fraction of active ribosomes). Impairment of the growth conditions decreased the RNA:protein ratio and increased the overall efficiency of protein synthesis in the microorganisms. Conclusion Our results suggest that the decrease in RNA:protein and estimated P:N ratios with decrease in the growth rate of the microorganism is a consequence of an increased overall efficiency of protein synthesis in the cell resulting from activation of the general stress response and increased transcription of cellular maintenance genes at the expense of growth related genes. The strong link between P:N stoichiometry, RNA:protein ratio, ribosomal requirement for protein synthesis, and growth rate of microorganisms indicated by the study could be used to characterize the N and P economy of complex ecosystems such as soils and the oceans
    corecore