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Models play an important role in optimizing fertilizer use in agriculture to maintain 

sustainable crop production and to minimize the risk to the environment. In this study, 

we present a new Simulation Model for Crop Response to Nitrogen fertilizer 

(SMCR_N). The SMCR_N model, based on the recently developed model EU-

Rotate_N for the N-economies of a wide range of crops and cropping systems, 

includes new modules for the estimation of N in the roots and an associated treatment 

of the recovery of soil mineral N by crops, for the reduction of growth rates by 

excessive fertilizer-N, and for the N mineralization from soil organic matter. The 

validity of the model was tested against the results from 32 multi-level fertilizer 

experiments on 16 different crop species. For this exercise none of the coefficients or 

parameters in the model was adjusted to improve the agreement between 

measurement and simulation. Over the practical range of fertilizer-N levels model 

predictions were, with few exceptions, in good agreement with measurements of crop 

dry weight (excluding fibrous roots) and its %N. The model considered that the entire 

reduction of soil inorganic N during growth was due to the sum of nitrate leaching, 

retention of N in fibrous roots and N uptake by the rest of the plant. The good 

agreement between the measured and simulated uptakes suggests that in this arable 

soil, losses of N from other soil processes were small. At high levels of fertilizer-N 

yields were dominated by the negative osmotic effect of fertilizer-N and model 

predictions for some crops were poor. However, the predictions were significantly 

improved by using a different value for the coefficient defining the osmotic effect for 

saline sensitive crops. The developed model SMCR_N uses generally readily 
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available inputs, and is more mechanistic than most agronomic models and thus has 

the potential to be used as a tool for optimizing fertilizer practice. 

 

Abbreviations: %N - percentage of N in W, %Ncrit - critical %N in W, i.e. the 

minimum %N at which growth is not restricted, %Nmax - maximum percentage of N in 

W, %Nrpot - potential percentage of N in Wr, %Nr - percentage of N in Wr, ∆W - 

maximum possible increment in growth on the day (t ha-1), α, β - parameters which 

relate critical %N to crop dry weight, αosmo  - species specific correction factor for the 

osmotic effect of growth, θosmo - average soil volumetric water content in the depth of 

Zosmo, ρs - soil bulk density (g cm-3), ax, az - shape parameters controlling root 

distribution in x and z directions, ET0  - daily reference evapotranspiration (mm), ETc - 

daily crop evapotranspiration under standard conditions (mm), f - soil fraction not 

covered by plants and exposed to evaporation, fNmin - response function for soil 

temperature, k - coefficient for the rate of organic matter oxidation (yr-1), K1 - value of 

W at which the rate of increase is half the maximum (t ha-1), K2 - growth rate 

coefficient (t ha-1 d-1), Kc - crop coefficient for calculating evapotranspiration from 

ETc, Kcb - basal crop coefficient for transpiration, Kcmax - maximum evapotranspiration 

coefficient, Ke - evaporation coefficient, Kri  - root growth rate in the corresponding 

direction (m day-1 °C-1) (i = x, z), L0 - total root length (m m-3), mC - soil organic C 

content (%), MNosmo - mineral N in the depth of Zosmo (kg ha-1), Nsmin - daily N 

mineralization rate from soil organic matter (kg ha-1), Q10 - a factor for correcting 

rates of soil organic matter breakdown for differences in temperature, RCN - C:N ratio 

of the soil organic matter, Ri - rooting width and depth (m) (i = x, z), Ristart - starting 

rooting width and depth (m) (i = x, z), Rlux - coefficient of crop luxury N consumption, 

RN - reduction coefficient of increment in W due to N deficiency in crop, Rosmo - 
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reduction coefficient of increment in W caused by the osmotic pressure, t - time (d), T 

- daily mean air temperature (
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oC), Tgmax - temperature above which plant growth is the 

maximum (oC), Tgb - base temperature below which plant does not grow (oC), T0.5 - a 

half life of soil organic matter (yr), Tlag - threshold of cumulative day degree for root 

growth (oC d), Ts - base temperature at which fNmin(t) equals 1 (oC), Tsoil - daily mean 

soil temperature (ºC), UN - potential N uptake (kg ha-1), UNr - potential N demand by 

fibrous roots (kg ha-1), W - dry weight of the entire plant excluding fibrous roots (t ha-

1), Wr - dry weight of fibrous roots (t ha-1), Zosmo - soil depth used in the calculation of 

mean osmotic pressure (cm), Zsmin - depth of soil below which no N mineralization is 

assumed to take place (cm), ΔWr - root dry weight increment (t ha-1). 

 

Key words: simulation, agronomic model, crop response, nitrogen fertilizer, crop 

growth, SMCR_N 

 

1. Introduction 

 

It is a common feature that agro-ecosystems, like many other ecosystems, receive 

excessive applications of nitrogen (Schlesinger et al., 2006). This has caused nitrate 

pollution to surface water (Schlesinger et al., 2006), to groundwater via leaching 

through soils (Neeteson and Carlton, 2001), and contributed to the rise in N2O 

emissions (Jungkunst et al., 2006). Imbalance in N supply relative to crop demand can 

also compromise growth and quality of produce. Therefore, it is important to develop 

effective systems to optimize fertilizer-N application in agricultural systems to 

maintain sustainable crop production and to minimize the risk to the environment. 
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The optimum levels of fertilizer-N are controlled by various dynamic factors such as 

the weather, soil conditions and the N demand for plant growth. It is generally 

impossible to obtain reliable estimates of optimum N levels by conventional statistical 

interpretation of a programme of field trials. Attempts have been made to use the 

knowledge of fundamental processes governing availability and acquisition of 

nutrient-N in the soil-plant system to devise mechanistic models for various crop 

species (Bergstrom et al., 1991; Hutson and Wagenet, 1991; Williams et al., 1993; 

Diekkruger et al., 1995; Jarvis, 1995; Hoogenboom et al., 1999; Brisson et al., 2003; 

Keating et al., 2003; Jones et al., 2003; Stöckle et al., 2003; van Ittersum et al., 2003; 

Liang et al., 2007; Rahil and Antonopoulos, 2007). The most prominent individual 

nutrient response models that cover a range of crops are the EPIC models (Williams et 

al., 1993; Sharpley and Williams, 1990a, b) and the DSSAT models (Hoogenboom et 

al., 1999; Jones et al., 2003). EPIC uses a single group of algorithms for simulating 

more than 20 crops, with each crop having its own unique parameter values. Versions 

of the model have been used widely to simulate soil-N dynamics on a large scale by 

many researchers (Huffman et al., 2001). The DSSAT group of models, on the other 

hand, focussed more on the physiological development of crops, dealing specifically 

with potential yields and their dependence on the environment. The models used 

different routines for the various crop types. This group of models includes CERES 

(Jones and Kiniry, 1986; Wu et al., 1989) for cereals, CROPGRO (Boote et al., 1998) 

for grain legumes, and SUBSTOR (Ritchie et al., 1995) for root and tuber crops. In all, 

they cover more than 16 different crops and most have been successfully evaluated in 

different climatic zones (Huffman et al., 2001). The EPIC and DSSAT models have 

been used in both basic and applied research to study the effects of climate and 

management on growth and yield. However, these models are generally species 
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dependent, and therefore different models are required for different crops to study N 

response on yield, causing difficulties in the application of model to devise 

environmentally friendly and sustainable fertilization strategies. Moreover, the 

required inputs of these models are generally difficult to obtain and the models can be 

difficult to run due to their complexity. 

 

In order to overcome these problems, a new agronomic model named EU-Rotate_N 

has been developed for N response of vegetable and arable crops (Rahn et al., 2007). 

The model inherits some routines used in the N_ABLE (Greenwood et al., 1985; 

Greenwood and Draycott, 1989a, b; Greenwood et al., 1996) which has been 

independently tested in different countries (Riley and Guttormsen, 1993; Goodlass et 

al., 1997; Yang et al., 1999; Huffman et al., 2001; Yang et al., 2002) and served as a 

key component in the integrated model for N, P and K fertilizers (Zhang et al., 2007), 

but is much more advanced and more mechanistic in dealing with many soil and plant 

processes. Compared with other agronomic models, EU-Rotate_N has the advantages 

of generality, 2-D which is able to simulate N dynamics in the soil domain in the 

horizontal and vertical directions, utilisation of readily available data, and the ability 

to simulate crop rotations. The generality of the model was made possible due to the 

discoveries that both crop critical %N for maximum growth and crop dry matter 

increments during growth could be described by unified equations (Greenwood et al., 

1985). These discoveries have been used in the previous crop N models such as 

various versions of the N_ABLE (Greenwood, 2001). By setting a pre-defined set of 

values for each crop, the model used the same algorithm to simulate N responses for 

different crops. The 2-D nature of the model makes it more accurate in simulating N-

economy for row crops. However, although the EU-Rotate_N model is one of the 
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most innovative models of its kind, it does not properly account for N allocated in 

fibrous roots during growth, and is unable to consider the depressive osmotic effect 

caused by excessive application of fertilizer-N on crop growth and therefore cannot 

reproduce some data collected from crop N response experiments (Zhang et al., 2007). 

Furthermore, the parametrization of the complex N mineralization routine for release 

of soil mineral N could be problematic. To address these problems, a new Simulation 

Model for Crop Response to Nitrogen fertilizer (SMCR_N) based on the EU-

Rotate_N is developed in the study. 

 

Agronomic models concern many processes in the crop-soil systems such as plant 

growth, N turnover, water and N transfers etc., and therefore systematic validation of 

models is difficult due to the lack of appropriate data, especially for the models like 

SMCR_N which covers a wide range of crops. Ideally the developed model SMCR_N 

requires to be tested against data from field experiments in different climates and soils, 

and over a range of crops, which is unfortunately not possible in the study due to the 

lack of data. However, we were able to test many features of the new model with a 

dataset from field experiments on 16 vegetable crops grown under different fertilizer-

N treatments carried out at Wellesbourne UK (Greenwood et al., 1980). The 

advantage of using such a dataset is that the dataset was comprehensive and the 

measurements were systematic. The fertilizer-N treatments for each crop spanned 

over a wide range from zero fertilizer-N, ensuring the responses of yield and N 

composition to fertilizer-N. 

 

The objectives of this study are therefore: 1) to present the SMCR_N model which 

rectifies the above-mentioned faults in the EU-Rotate_N model by incorporating 
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newly developed modules to take account of N-partition into the roots and the osmotic 

effect of mineral N in the soil on crop growth, and to devise a simplified algorithm for 

calculating N mineralization based on soil organic C content and its C:N ratio and the 

half-lives of organic matter in different soils, 2) to rigorously test and validate the 

model against a comprehensive dataset collected from 192 sets of measurements 

obtained in 32 fertilizer-N field experiments on 16 different vegetable species. 

 

2. Model description 

 

2.1. Model structure 

 

SMCR_N is a comprehensive, dynamic, process-based mechanistic model for the 

responses of crop yield and nitrogen composition to fertilizer-N. Here we present a 

full description of the new model, which contains some modules from EU-Rotate_N 

and the inclusion of improvements. The model comprises various modules simulating 

processes in plant, soil and at the plant-soil and plant-atmosphere interfaces. Figure 1 

illustrates the diagram of the system showing the flows of material and information 

between different modules and the interactions between variables and modules. The 

implementation of algorithms in the modules is realized using the programming 

language FORTRAN. The soil profile is represented by 5 cm thick layers down to 2 m. 

For row crops, the number of horizontal segments in each layer depends on row width, 

but there is only a single horizontal segment for crops with row widths below 15 cm. 

Soil properties can be assigned in each segment, allowing the change of soil down the 

profile. During the simulation all the processes are recalculated for each day. The 

algorithms in the major modules are formulated in the following sections. 
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2.2. Plant growth 

 

Plant growth module consists of two parts, i.e. growth in plant excluding fibrous roots 

and root growth. This module is inherited from the EU-Rotate_N. 

 

Potential maximum daily increments in dry weight W excluding fibrous roots are 

calculated by the main growth equation. It defines the growth rate until harvest and 

was derived from the notion that the interception of radiation increased asymptotically 

with increase in plant mass per unit area (Greenwood et al., 1977; 1985; Greenwood, 

2001). The equation is:  
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where ∆W (t ha-1) is the maximum possible increment in growth on the day, W (t ha-1) 

is the dry weight of the entire plant excluding fibrous roots, t (d) is the time, K2 (t ha-1 

d-1) is a growth rate coefficient, and K1 is the semi-maximum W for growth rate. K2/K1 

and K2 approximate to the specific growth rate when W→0 and to the absolute growth 

rate when W>>0, respectively.  Eq. (1) thus mimics initial exponential followed by 

near constant growth as W increases. By assuming plant growth is driven by air 

temperature, integrating Eq. (1) gives:  
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where W0 and Wmax are the plant dry weight at planting and at harvest, respectively. T 

(
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oC) is the daily mean air temperature, Tgmax (oC) is the temperature above which the 

growth rate is at its maximum, and Tgb (oC) is the base temperature below which no 

growth occurs. Eq. (1) with K1 = 1 t ha-1 gave a good description of sequential 

measurements of W during growth, under near-optimum conditions, of 18 C3 species 

during the main growing season in the UK (Greenwood et al., 1977). 

 

The reduction coefficient of increment in plant weight due to N deficiency in crop, RN, 

is calculated from: 
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where %N is the percentage of N in W, %Ncrit is the critical %N, i.e. the minimum 

%N at which growth proceeds at the maximum rate.  

 

%Ncrit is defined by (Greenwood et al., 1985): 

 

)1(% 26.0 W
crit eN −+= βα         (4) 

 

where α and β are crop specific parameters that relate critical %N to crop dry weight. 

 

Some crops are able, when there is much soil mineral N, to take up more N than 

necessary for maximum growth. In these circumstances, the maximum crop %N is 

calculated as follows: 
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critlux NRN %% max =          (5) 

 

where Rlux is the coefficient of crop luxury N consumption. 

 

Root growth simulation is in accordance with that proposed by Pedersen et al. (2007). 

The rooting depth and width are calculated based on the cumulative mean day 

temperature according to: 

   

},])(,0max[min{ maxirilagistarti RKTTRR ∑ −+=      (6) 

 

where i = x, z stands for the coordinates in the horizontal and vertical directions, Ri (m) 

is the rooting width and depth, Ristart (m) is the starting rooting width and depth, ∑  

(

T

oC d) is the cumulative day degree, Tlag (oC d) is the threshold of cumulative day 

degree for root growth, Kri (m day-1 °C-1) is the root growth rate in the corresponding 

direction. Rimax (m) is the maximum rooting depth and width restricted by physical 

barriers or the effective rooting width (= a half row width) for row crops. Eq. (6), 

given a proper paramerisation, gives a good description of root penetration of crops 

observed in a number of studies (Thorup-Kristensen, 1998, 2001, 2006; Thorup-

Kristensen & Van den Boogaard, 1998, 1999; Kage et al., 2000; Kristensen & 

Thorup-Kristensen, 2004). 
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Crop total root length is calculated as a product of root dry weight and a fixed specific 

root length. The increment in root dry weight 

1 

rWΔ  is a function of the increment in 

crop dry weight , crop dry weight W, and a parameter defining root class:  
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rootr RWW ×Δ=Δ          (7) 

 

where Rroot is the ratio of  to rWΔ WΔ , which declines with W and varies with the 

root class parameter as shown in Fig. 2. 
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The root length declines logarithmically from the soil surface downwards, as 

originally proposed by Gerwitz and Page (1974), and also logarithmically laterally 

from the crop row to the inter-row soil. However, different from Gerwitz and Page’s 

(1974) the module extends the rooting depth by 30% from the calculated penetrating 

depth where the root density declines from a calculated value at the penetrating depth  

to zero, i.e.:  
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where L0 (m m-3) is the total root length, ax and az are the shape parameters controlling 

root distribution in x (horizontal) and z (vertical) directions, respectively. 

 

2.3 N and water requirement 
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In the EU-Rotate_N there is only one N compartment in crops, and the N partition to 

the roots is ignored. This fault has been rectified in the SMCR_N. SMCR_N assumes 

that there are two N compartments in crops, a top N compartment and a root N 

compartment. The top N compartment contains N of the entire plant excluding N in 

fibrous roots, whereas the root N compartment stores N allocated in fibrous roots. The 

potential N requirement in the top compartment is calculated from its dry weight, N 

concentration, the maximum possible concentration for a plant of the same mass and 

its potential maximum increment in weight, i.e.: 

 

]%%)[(10 max NWNWWU N ×−×Δ+=       (9) 10 

11 
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where UN (kg ha-1) is the potential N uptake of the entire plant excluding fibrous roots. 

 

The demand of N in the root compartment can be expressed as:  
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]%%)[(10 rrrpotrrNr NWNWWU ×−×Δ+=       (10) 

 

where UNr (kg ha-1) is the potential N demand by fibrous roots,  and  are the 

root dry weight on the previous day and the potential root dry weight increment on the 

day, respectively, %N

rW rWΔ

r is the actual percentage of N in Wr, and %Nrpot is the root 

potential %N, which is calculated from: 

 

W
rpot eN 26.01% −+= β           (11) 
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Eq. (11) was derived by assuming that the potential %N in the roots decreased with 

increase in crop dry weight, and the decrease rate followed the same pattern as the 

critical %N in W. The ratio of critical %N in W to that in W
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r is α, a parameter in 

calculating critical %N in W (Eq. 4) and always greater than 1.0. For crops with large 

yields, %Nrpot approaches 1% at maturity. The derivation was based on the 

observations of %N in roots over a number of field crops made by Osaki et al., (1997) 

that root %N decreased during growth and the %N at maturity ranged from 0.5% to 

2.0% with wheat and maize having the value of about 1%. 

 

The potential water demand is the crop evapotranspiration, which is calculated using a 

FAO 56 crop coefficient method (Allen et al., 1998): 

 

0ETKET cc =           (12) 

 

where ETc (mm) is the daily crop evapotranspiration under standard conditions, Kc is 

the crop coefficient and ET0 (mm) is the reference evapotranspiration. 

 

The crop coefficient method partitions the Kc factor into two separate coefficients: 

 

ecbc KKK +=          (13) 

 

where Kcb, dependent on crop species and its development stage, is the basal crop 

coefficient for transpiration, and Ke is the soil evaporation coefficient, which is 

defined as: 
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where Kcmax is the maximum evapotranspiration coefficient, and f is the soil fraction 

not covered by plants and exposed to evaporation, i.e. the fraction of soil surface from 

which most evaporation occurs. The parameter values of ET0, Kcb, Kcmax and f can be 

determined according to Allen et al. (1998). 

 

2.4. N mineralization from soil organic matter 

 

In the EU-Rotate_N, N release from soil organic matter, added crop residues and 

organic fertilizers to the soil is calculated based on the N mineralization routines in 

the DAISY model (Hansen et al., 1990). The latter is a sophisticated module for C 

dynamics in the soil that includes separate equations for the metabolism of different 

pools of soil organic matter, soil microbial dry weight and added organic matter. 

Unfortunately, not all this information was measured in the field experimental data to 

test the validity of the module. In the SMCR_N model an alternative simplified 

algorithm was therefore devised for calculating N mineralization rates. It required 

inputs of the average yearly half-life of soil organic matter, the organic C content and 

C:N ratio. 

  

Assume the organic matter breakdown rate is in first-order, i.e.: 
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where mC (g g-1) is the organic C content, and k (yr-1) is a coefficient for the rate of 

organic matter oxidation. 
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From Eq. (15) the relationship between a half life and the breakdown rate k is: 

 

)5.0ln(5.0 −=kT          (16) 

 

where T0.5 (yr) is the average half life over an entire year. 

 

Both soil temperature and soil water content influence N mineralization from soil 

organic matter (Johnsson et al., 1987). However compared to the soil moisture, soil 

temperature has a dominant effect on N mineralization in many soils cropped with 

field vegetables and arable crops as these are usually irrigated as required. In this 

study we considered that soil N mineralization was controlled solely by soil 

temperature. 

 

A Q10 relationship is used to express the effect of temperature (Bunnell et al., 1977; 

Johnsson et al., 1987): 

 

10
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10min )(
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where fNmin(t) is the response function for soil temperature, Tsoil(z) is the soil 

temperature at the soil depth z, Ts (oC) is the base temperature at which fNmin(t) equals 

1, and Q10 is the factor change in rate with a 10 degree change in temperature. 
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Thus, provided the half life of organic matter breakdown is known, the daily N 

mineralization from soil organic matter can be calculated: 
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where Nsmin (kg ha-1) is the daily N mineralization rate from soil organic matter, sρ  (g 
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-3) is the soil bulk density, Zsmin (cm) is the soil depth where N mineralization takes 

place, and RCN is the C:N ratio of the soil organic matter. 

 

2.5. Effect of osmotic pressure on crop growth 

 

To consider the negative osmotic effect caused by mineral N in the soil on crop 

growth, a growth reduction coefficient Rosmo is introduced by modifying Zhang et al. 

(2007): 

 

rosmoosmo KR α−= 1          (19) 16 

17 

18 

19 

20 

21 

 

where αosmo is the species specific correction factor for the osmotic effect of growth, 

αosmoKr is the reduction in the daily increment caused by the osmotic pressure, which 

is defined by the following equation: 
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in which Zosmo (cm) is the soil depth where the osmotic pressure induced by mineral N 

is considered, M
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Nosmo (kg ha-1) is the mineral N in the depth of Zosmo, θosmo is the 

average soil volumetric water content in the depth of Zosmo (30 cm).  The equation was 

derived by considering that NH4NO3 was incorporated in the upper 30 cm from the 

surface and was immediately nitrified and converted into NO3 ֿ.  As in standard 

theory each gram mole ion per litre of soil solution increased the osmotic pressure by 

8.27 (kPa) × the absolute temperature, (273 K); no correction was made for 

differences in temperature.  It was assumed that Kr equalled the ratio of osmotic 

pressure in 6.73 kPa and that Kr =1 when the ratio ≥ 1 (Kramer, 1949; Mengel and 

Kirkby, 2001). 

 

2.6. Root N and water uptake and evaporation 

 

Root N uptake is calculated as a function of crop N demand, root length, the soil 

mineral N concentration, and the minimum soil mineral N concentration for uptake, as 

proposed by Pedersen et al. (2007). Root water uptake is simulated using the FAO 

approach (Allen et al., 1998). The uptake is at its potential rate when volumetric soil 

water in the rooting depth is above or equals a crop specific critical value. When soil 

water is below the critical value, the transpiration decreases linearly with decrease in 

soil water content until it ceases when the soil water content corresponds to a 

threshold value. Both the critical and the threshold values can be estimated by the 

FAO procedure (Allen et al., 1998). Evaporation from the top soil whose depth varied 

with soil type according to Allen et al. (1998) was computed using the approach 

proposed by Brisson and Perrier (1991) and Brisson et al. (1998; 2003). 
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The simulations of soil water and N movement are the same as these in the EU-

Rotate_N. Soil water movement and N transport were simulated with a cascade model, 

similar to that proposed by Ritchie (1998). Soil profiles were divided into layers. 

Infiltration, the difference between precipitation and potential evaporation, moved 

into the soil profile where it was routed through the soil layers. A drainage coefficient, 

which was calculated as the ratio of the difference between soil water content at 

saturation and field capacity to soil water content at saturation, was used to predict 

flow through each soil layer, with flow occurring when a layer exceeded field 

capacity. The proportion of nitrate transported from a soil layer was considered to be 

identical to the ratio of water drainage out of the layer to the total water in the layer.  

Diffusion terms for N transport in the soil were not included in the simulation.  

 

2.8. Model inputs 

 

The inputs for running the SMCR_N model include site characteristics, weather data, 

soil properties, and cropping parameters together with the initial conditions, i.e. 

 

• Site properties: altitude and latitude of the site. 

• Weather data: air temperature, radiation, rainfall, relative humidity and wind 

speed. 

• Soil properties: bulk density, volumetric soil water content at saturation, field 

capacity and the permanent wilting point, soil organic C content, CN ratio, 

half-life of soil organic matter, and the depth from the soil surface of any 
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barrier to rooting. 

• Initial conditions: volumetric soil water content and mineral N concentration 

distributions in the soil profile and dates of measurement. 

• Fertilization and irrigation: dates and amounts of fertilizer-N and irrigation 

applied.  

• Crop data: species, spacings, sowing/planting and harvest dates, crop dry 

weight at planting, expected maximum crop dry weight excluding fibrous 

roots. 

 

3. Experiments and parameter setting 

 

3.1 Experimental set-up 

 

The validity of the model SMCR_N was tested against a comprehensive dataset of the 

yield and N composition from historical field experiments on various crops at 

Wellesbourne, UK. Sixteen crops were grown in 32 fertilizer-N experiments during 

the period 1970-1975 on the same field: Big Ground of the National Vegetable 

Research Station, now Warwick-HRI (Greenwood et al., 1980). The soil was a sandy 

loam of the Wick series and is described in Whitfield (1974). The experiments 

followed the same general pattern. Six fertilizer-N treatments from N0 (the zero 

fertilizer-N) to N5 (the highest fertilizer-N) were tested in each crop. There were three 

plots in each fertilizer-N treatment, all with the expected optimum levels of P and K. 

In each plot there were three blocks or replicates. The plots were laid out 

systematically in order of fertilizer application. The direction of increase in fertilizer-

N was chosen at random. The entire plant material excluding fibrous roots was 
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removed from each block and weighed at commercial maturity. All the plant material 

from three plots with the same fertilizer-N treatment was bulked together and treated 

as one sample. The dry weight and the N composition in the plant were then 

determined. The dates of sowing and harvest and the levels of fertilizer-N for each of 

the experiments are summarised in Table 1. Detailed description of the experiments 

can be seen elsewhere (Greenwood et al., 1980). 

 

3.2. Parameter setting 

 

N-nutritional characteristics that are defined in terms of parameters α, β (Eq. 4) that 

relate %Ncrit to W and Rlux (Eq. 5) for each of the crops are given in Table 2. Also in 

the table are the parameter values for calculating root development and estimating 

potential evapotranspiration. It was assumed that the root distribution in the soil depth 

is the same as that in the horizontal direction for row crops, thus ax and az were set the 

same value.  

 

At the time of planting the estimated distributions of mineral N were 30 kg N ha-1 in 

the 0-30 cm layer, 15 kg N ha-1 in 30-60 cm layer, and 5 kg N ha-1 in the 60-90 cm 

layer (Zhang et al., 2007). The soil bulk density was 1.4 g cm-3, and the volumetric 

water content at saturation, field capacity and the permanent wilting point were 0.45, 

0.26 and 0.1 cm3 cm-3 (Zhang et al., 2007), respectively. As the soil moisture was not 

measured at the time of planting, the soil water distribution in the profile at planting 

was calculated by running the model from 1 January of the planting year when the soil 

water deficit was assumed to be zero. For the exercise of model validation, the 

maximum yield, obtained from the experiment on a crop grown at various fertilizer-N 
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on the same year, was taken to be the required input of maximum plant dry weight at 

harvest. However, if the model is used for prediction purposes, the maximum yield 

should be estimated independently based on previous experience or other measures. 

The minimum soil mineral N level below which plants were not able to take up N was 

set 0.0035 kg m
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-3, and the species specific correction factor for the osmotic effect of 

growth was set 1.0 for all crops. Broad bean and pea differed from other crops in that 

they were able to fix atmospheric-N in these experiments when N supply from the soil 

was limited, although it was recognised that this ability was dependent on the 

presence of suitable strains of Rhizobium in soil. 

 

The organic matter breakdown rate k was calculated as 0.0185 yr-1 using Eq. (16) 

based on an estimated half life of 37.5 years, which is close to the turnover rate for 

resistant C of 0.02 yr-1 used in Fang et al. (2005), and similar with these used in other 

models (Mueller et al., 1996; Fu et al. 2000). Also used in the simulations are the 

measured organic C content of 0.9% (Costigan et al., 1983) and C:N ratio of 10 which 

is the approximate value for top soil of most arable soils (Nieder et al., 2003). A value 

of 3 was used for Q10 (Hansen et al., 1990). The base temperature, Ts, at which the 

response function for soil temperature on N mineralization equals 1, was set 20 oC 

(Hansen et al., 1990). It was further assumed that soil N mineralization was restricted 

to the upper 30cm depth of soil. 

 

4. Evaluation criteria 

 

The evaluation criteria used in the study were similar with those described previously 

by Greenwood et al. (2001) and Zhang et al. (2007). If Y is the value predicted by the 
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model and y is the experimentally determined treatment mean then Y may be a good 

predictor either absolutely or after a both shift and scale change i.e. a + bY. 
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The discrepancies in both cases are: 
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These values were compared with the residual variance of y after removal of the block 

and treatment effects in an analysis of variance. The variance ratio test was applied. If 

the values were not significantly different at P < 0.05, the residual variance from D1 

and D2 was attributed to experimental error. 

 

5. Results 

 

Simulated values of plant %N were almost proportional to the measured values for all 

192 combinations of crops and fertilizer levels (Fig. 3). The model gave good 
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predictions of both W and %N for some crops over the whole range of fertilizer levels 

as illustrated for turnip, summer cabbage, parsnip, potato, radish and spinach, in Fig. 4. 

Figure 5 compares the measured responses of plant W to fertilizer-N for summer 

cabbage 70 and sugar beet 73 with the simulated values from the EU-Rotate_N and 

the SMCR_N models. A much better agreement was observed between measurement 

and simulation from the SMCR_N model for both cases, illustrating that the 

SMCR_N model performs better than the EU-Rotate_N model. 
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Statistical comparison was carried out between the measured and simulated W and 

%N for 13 out 16 crops (Table 3). No attempt of statistical analysis was made for the 

other 3 crops due to lack of degree of freedom resulting from the crops grown only in 

a single year. The discrepancies between the simulated and measured W at zero 

fertilizer-N which was crucial to test the model were less than 20% for 9 out of 13 

crops (Table 3). If the ratio of D1 or D2 to the residual variance in Table 3 is not 

significant at P < 0.05 by the variance ratio test, all the discrepancies can be explained 

by experimental error (Greenwood et al., 2001; Zhang et al., 2007). Thus, it can be 

concluded that there was no significant difference between the measured and 

simulated values of W for turnip and of %N for lettuce, as the ratio of D1 to the 

residual variance was not significant at P < 0.05. The linear relationship between 

measured and simulated values of %N for winter cabbage accounted for the 

discrepancies between measurement and simulation, as the ratio of D2 to the residual 

variance was not significant at P < 0.05. 

 

Since the maximum dry weight yield was obtained from the experiment on a crop 

grown at various fertilizer-N, it is important to test the model’s ability to predict yield 
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reduction caused by either the lack of N supply to maintain the maximum growth or 

the depressive effect of osmotic pressure on growth induced by excessive application 

of fertilizer-N. All the crops were grown under a wide range of fertilizer-N treatments, 

i.e. from zero fertilizer-N (N0) to the maximum fertilizer-N level (N5), to ensure that 

crops grew under the conditions which varied from the deficit to the excessive N 

supply. We grouped fertilizer-N treatments from N0 to N5 for all the crops for testing 

the response of crop W to fertilizer-N, although the grouping was somewhat arbitrary 

since the fertilizer-N levels were not related to N requirement for optimal growth for a 

given crop. Nevertheless, it could provide useful information for the assessment of the 

model’s ability to simulate the response of crop W to different fertilizer-N 

management. Figure 6 compares the measured and simulated W for each crop at 

different fertilizer–N levels normalised by the maximum dry weight among all the 

treatments. The correlations between the measured and simulated W were fairly good 

at the zero fertilizer-N level (N0) and relatively weak at a low fertilizer-N level (N1). 

Also, at the N1 level the model appeared to over-predict yield. The simulated W was 

in good agreement with the measured values at the middle (sub-optimum) fertilizer-N 

levels (N2 and N3). At the two highest fertilizer-N levels (N4 and N5), the measured 

and simulated values spread over wider ranges and the correlations were weak. 

However, better correlations were observed by excluding salt sensitive crops of carrot, 

broad bean, pea and onion (McKenzie, 1988). 

 

The simulated ratios of N contained in the plant excluding fibrous roots to that in the 

whole plant including fibrous roots for different crops grown at sub-optimal N levels 

crops are plotted in Fig. 7(a). The ratio, varying with crop species, ranged from 0.77 

for crops with small yields to 0.93 for crops with big yields. The ratio calculated in 
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the study was correlated with a ‘recovery factor’ fairly well (Fig. 7b). The recovery 

factor was obtained by plotting crop N uptake against fertilizer-N and determining the 

gradient at near zero application for crops grown under conditions where there was no 

leaching (Greenwood et al., 1989). The measured recovery factor includes effects of 

loss of mineral by biological process such as denitrification which the simulated ratio 

did not. When fertilizer-N was over applied, crop yields declined linearly with 

increase in fertilizer-N (Fig. 8) as calculated using Eq. (19), and percentage reductions 

in yield were greater for crops having a low than a high yield. For example, 300 kg-N 

ha
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-1 depressed yield by 27% for radish but only about 16% for red beet, respectively. 

 

Figure 9 shows how the osmotic correction factor αosmo affects carrot yield. Increasing 

the correction factor value increases the depressive effect on crop yield. For the 

default value set in the model, i. e αosmo = 1, an excessive application of 250 kg-N ha-1 

resulted in yield reduction by about 12%, whereas the reduction increased to 27% if 

the correction factor was doubled. For carrots (Fig. 9a), αosmo = 2 appeared more 

appropriate than the default value of 1 in the model. Figure 9(b) shows the normalised 

dry weight between the measured and simulated values for all the crops at two highest 

fertilizer-N levels where the osmotic correction factor was set αosmo = 2 for the salt 

sensitive crops of carrot, pea and onion. This correction results in much better 

agreement between the measured and simulated values of normalised W than was 

obtained with the default value of αosmo = 1 for all crops given in Fig. 6 (e)(f). 

 

The simulated estimates of cumulative N mineralized from soil organic matter are 

plotted against time in Fig. 10(a) for years 1973 and 1975; they were calculated 

assuming that they were dominated either by measured mean daily soil or air 
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temperature. The differences between the simulated cumulative mineralization of N 

using each of the two types of temperature were always less than 7%. Inter-year 

differences were also small between 1973 and 1975. Figure 10(b) shows that there is a 

strong correlation between the measured temperature in top 30 cm soil and air 

temperature. The best regression lines for 1973 and 1975 are close to the 1:1 line. 

 

6. Discussion 

 

6.1. Model general performance and its comparison with EU-Rotate_N 

 

The comparisons between the measured and simulated variables were made without 

any adjustment of parameter values to improve the degree of agreement. Nevertheless 

there was, with few exceptions, good agreement between the measured and simulated 

values of %N and of W for each of the 16 crops over the practical range of fertilizer 

applications, which indicates that the model was properly constructed and calibrated 

and that the key modules worked well. 

 

It can also be seen that the newly developed model SMCR_N performed much better 

in simulating the responses of crop W to fertilizer-N than the EU-Rotate_N as 

illustrated in Fig. 5. It appears that both models produced approximately the same 

results for the positive effect of fertilizer-N on crop W. However, there is a fault in 

accounting for N in the soil-crop system in the EU-Rotate_N. The model does not 

account for N partitioned in the roots, and this means that crop requires less N for 

growth. If this factor had been accounted for properly, the performance of the EU-
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Rotate_N would have been less satisfactory even for the positive effect of fertilizer-N 

on crop W. 

 

6.2. Mechanistic account of fractional recovery of fertilizer-N by crop 

 

The routine for calculating the root N content is an important feature of the model.  

The ratio of the N content of the plant excluding fibrous roots to the N content of the 

plant including fibrous roots at sub-optimal levels of N for the different crops was 

strongly correlated with an independent measure of the recovery of fertilizer-N (Fig. 

7b) (Greenwood et al., 1989). Moreover, the ratio was close to the recovery for crops 

with large yields, whereas it was generally lower than the recovery for small crops. 

The recovery was obtained by plotting N uptake at harvest against the fertilizer-N 

level and determining the gradient when the fertilizer level tended to zero. The 

discrepancies between the ratio and the recovery for small crops might be due to the 

fact that the lateral distribution of mineral N in the soil was not considered in 

determining recovery. For a small crop even grown under a low fertilizer-N, a 

significant amount of mineral N could be left at harvest due to failure of the crop to 

fully explore the inter row soil and extract mineral N from it. The recovery also 

assumed that there was no loss of mineral N through soil processes such 

denitrification. The model assumes that the entire disappearance of fertilizer-N, 

excluding that lost by leaching, could be accounted for by uptake in the roots and in 

the remainder of the plant. Yet with this assumption the model gave good predictions 

of W, its %N content and the ratio in good agreement the recovery for crops with big 

yields. It therefore appears that N losses from low levels of fertilizer-N through soil 

processes such as denitrification, ammonia volatilization and ammonia fixation were 
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small. Though small, they may explain why the predicted values of W for some crops 

are higher than the measured ones at level N1.  
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6.3. Mechanistic account of depressive osmotic effect on yield 

 

Excessive application of fertilizer-N can cause negative osmotic effect on crop growth 

(Kramer, 1949; Mengel and Kirkby, 2001) and pollute the environment (Neeteson and 

Carlton, 2001). There are also limits for acceptable nitrate content for some crops 

such as lettuce and spinach set by EC legislation (EC, 2006). Although the effect can 

be qualitatively considered (Mengel and Kirkby, 2001), it is seldom included in most 

agronomic models, which makes the models unable to explain some measured results 

from crop N response experiments as shown in the study and in Zhang et al. (2007).  

 

Good agreement between the simulated osmotic effect on yield for 12 out of 16 crops 

studied using the proposed approach and measurement indicates that soil mineral N in 

the top 30 cm, despite different rooting depths and root distributions resulting from 

different crops, exerts predominant effect on crop yield and the proposed approach to 

quantify the osmotic effect on growth with the value of the correction factor of 1 

works well for most crops. The effect is linearly related to the excessive amount of 

fertilizer-N (Fig. 8). Nevertheless, salinity tolerance varies with crop species 

(McKenzie, 1988).  

 

It is clear that the model with the osmotic correction factor of 1 did not work 

satisfactorily for the salt sensitive crops. The possibility of using the proposed 

approach with a different value for the correction factor for different crops to simulate 
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the osmotic effect was therefore explored. It appeared that a correction factor value of 

2 for a low salt tolerant crop was more appropriate than 1 (Fig. 9). This underlines the 

possibility of improving the model by taking account of inter species differences in 

tolerance to salinity. Finally it should be pointed out that the osmotic effect on crop 

yield is a complex issue. The effect is not only dependent on crop species, but also on 

the soil since soil characteristics such as internal drainage play an important role in 

controlling soil salinity levels (Le Roux et al., 2007). Although the proposed approach 

of quantifying the osmotic effect on yield works reasonably well for the sandy loam 

soil used in the study, the adaptability of the devised equation and parameterisation 

for other soils such as the clay soil could be a subject of further investigation. 

 

6.4. Evidence of satisfactory N mineralization routine for release of soil mineral N 

 

Rigorous validation of the N mineralization routine was not possible in the study as 

the soil mineral N concentration was not directly measured in the experiments. 

However the indirect assessment of the performance of the routine can be carried out 

based on the following facts. Firstly the relationship between measured and simulated 

values of W when fertilizer-N was withheld (Figs. 4 and 6) was near proportional. 

Secondly the measured %N (Figs. 3 and 4) was nearly 1:1 to the simulated values. 

This, together with the first point, indicates that prediction of crop N uptakes from the 

endogenous soil mineral N, was simulated correctly. Thirdly the model simulated that 

the unfertilized crops reduced soil inorganic N to around 10 kg N ha-1 in the top 0.3 m 

of the soil, in agreement with the previous studies (Thorup-Kristensen and Sørensen, 

1999; Thorup-Kristensen, 2006), suggesting that the minimum level of soil mineral N 

from which plant roots can extract mineral N was set correctly for most crops. Finally, 
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the simulated N leaching at 90 cm soil depth was small during crop growth, ranging 

from 0 to 2.5 kg-N ha
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-1, which was supported by the previous study that N leaching 

mainly occurred from late autumn to early spring on the Western European soils, out 

of growing periods for most of crops (Neeteson and Carton, 2001). Based on these 

lines of evidence, it is clear that the mineral N input from soil organic matter into the 

crop-soil systems during growth was properly accounted for, and therefore it could be 

concluded that the proposed algorithm for N mineralization from soil organic matter 

worked reasonably well for this sandy loam arable soil. 

 

It was found that when the soil temperature is not available, air temperature can be 

used instead without great loss of accuracy of estimating soil N mineralization (Fig. 

10a) since the soil temperature in the top 30 cm depth is almost 1:1 related to the air 

temperature (Fig. 10b). This implies that in agronomic models the simulation of soil 

temperature might not be essential. Simulation of soil temperature concerns many 

complex processes such as heat transfer, moisture movement and water movement to 

the surface, and some of these processes are closely related to each other. Accurately 

modelling soil temperature has been proven extremely difficult (Akinyemi and 

Mendes, 2007). 

 

7. Conclusions 

 

A new generic model SMCR_N for nitrogen response on yield and N composition for 

vegetable and arable crops has been developed. The model gave predictions of the 

responses of crop dry weight W and its %N to fertilizer-N that with few exceptions 

were in close agreement with the measured values over the practical range of fertilizer 
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applications. This suggests that the model framework and the major modules 

including newly developed ones for N allocation in roots, the depressive effect of 

excessive fertilizer-N application on crop yield and the simplified N mineralization 

algorithm for release of soil mineral N work reasonably well. Therefore, the 

SMCR_N model can be used as a platform for optimizing fertilizer-N application in 

crop production. 

 

It was also found that to properly address the depressive effect of fertilizer-N on yield 

the coefficient defining the osmotic component of fertilizer-N response varied with 

the crop species. A coefficient of 2 worked well with salt sensitive species, whereas a 

smaller value of 1 was appropriate for the other crops. For the different species grown 

at a near optimum level of fertilizer-N, the ratio of N in the plant excluding fibrous 

roots to that in the plant including fibrous roots was strongly correlated with previous 

measurements of the N-recovery by the crop. As the model assumed that entire loss of 

inorganic N resulted from incorporation of N into the whole plant including fibrous 

roots, and there was good agreement between the measured and simulated N uptakes, 

it follows that for this soil, losses of N from processes such as denitrification, 

ammonia volatilization, and ammonia fixation in clay lattices were small. 

 

The future work includes the further development of the EU-Rotate_N with the 

obtained improvements in the study. Opportunities also exist to enhance the 

performance of the SMCR_N model in predicting N leaching by replacing the current 

cascade type algorithm for soil water movement with the one developed by Yang et al. 

(2009) which, using an integration strategy on the basic flow equation, is simple and 

highly accurate in hydrological simulations. 
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Table 1: Experimental details 
 

 
a two digits in the crop names represent the year of experiment, for example 72 stands 

for year 1972. 
 

Cropa 

  

Sowing/planting 
date 

Harvest 
date Fertilizer rate (kg N ha-1) 

  

Broad bean 72 26/04/72 10/08/72 0, 56, 140, 224, 308, 392 
Broad bean 73 13/03/72 19/06/72 0, 56, 140, 224, 308, 392 
Carrot 70 05/05/70 28/09/70 0, 56, 140, 224, 308, 392 
Leek 70 29/04/70 09/11/70 0, 90, 224, 359, 493, 628 
Leek 71 02/04/71 11/11/71 0, 90, 224, 359, 493, 628 
Lettuce 70 15/06/70 07/08/70 0, 56, 140, 224, 308, 392 
Lettuce 75 12/06/75 20/08/75 0, 56, 140, 224, 308, 392 
Onion 70 29/04/70 01/09/70 0, 90, 224, 359, 493, 628 
Onion 73 23/08/72 03/07/73 0, 56, 140, 224, 308, 392 
Parsnip 70 01/05/70 02/12/70 0, 90, 224, 359, 493, 628 
Parsnip 72 03/05/72 13/12/72 0, 90, 224, 359, 493, 628 
Parsnip 73 26/03/73 05/11/73 0, 90, 224, 359, 493, 628 
Pea 71 24/03/71 23/06/71 0, 67, 168, 269, 370, 471 
Potato 71 19/04/71 16/08/71 0, 67, 168, 269, 370, 471 
Potato 72 16/05/72 05/09/72 0, 67, 168, 269, 370, 471 
Potato 73 16/05/73 11/09/73 0, 67, 168, 269, 370, 471 
Radish 71 23/06/71 23/07/71 0, 90, 224, 359, 493, 628 
Radish 72 21/06/72 24/07/72 0, 90, 224, 359, 493, 628 
Red beet 70 19/05/70 19/10/70 0, 112, 280, 448, 616, 785 
Red beet 73 04/06/73 08/10/73 0, 112, 280, 448, 616, 785 
Spinach 71 20/04/71 22/06/71 0, 112, 280, 448, 616, 785 
Spinach 72 17/05/72 11/07/72 0, 112, 280, 448, 616, 785 
Sugar beet 73 16/04/73 27/11/73 0, 112, 280, 448, 616, 785 
Sugar beet 74 18/04/74 27/11/74 0, 112, 280, 448, 616, 785 
Summer cabbage 70 20/05/70 18/08/70 0, 90, 224, 359, 493, 628 
Swede 71 04/05/71 28/09/71 0, 90, 224, 359, 493, 628 
Swede 72 17/05/72 04/10/72 0, 90, 224, 359, 493, 628 
Swede 73 27/03/73 26/09/73 0, 90, 224, 359, 493, 628 
Turnip 71 06/04/71 07/07/71 0, 90, 224, 359, 493, 628 
Turnip 72 03/05/72 01/08/72 0, 90, 224, 359, 493, 628 
Winter cabbage 70 16/07/70 21/12/70 0, 112, 280, 448, 616, 785 
Winter cabbage 72 13/07/72 04/01/73 0, 112, 280, 448, 616, 785 
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1 Table 2: Crop parameter values used in the simulations 
Kcb

f

Crop N fixation αa β a Rlux
b Tlag

c

(day oC) 
Krz

d

(m day-1 oC-1) az
e Root 

class Initial stage Middle 
stage 

Mature 
stage 

Broad bean Yes 2 3 1 100 0.0007 3 1 0.15 1.1 1.05 

Summer cabbage No 2.6 1.1 1 100 0.001 2 1 0.15 0.95 0.85 

Winter cabbage No 2.6 1.1 1 100 0.001 1.5 2 0.15 0.95 0.85 

Carrot No 1.2 1.26 1.5 250 0.0007 3 1 0.15 0.95 0.85 

Leek No 1.35 1.77 1.2 350 0.0003 8 2 0.15 0.9 0.9 

Lettuce No 1.35 1.35 1 100 0.001 3 1 0.15 0.9 0.9 

Onion No 1.35 2.42 1 250 0.0003 8 2 0.15 1.05 0.75 

Parsnip No 1.35 1.26 1 250 0.0007 3 1 0.15 0.95 0.85 

Potato No 1.35 3 1 100 0.0007 3 1 0.15 1.1 0.9 

Radish No 1.35 1.87 1.2 100 0.001 3 1 0.15 0.85 0.75 

Red beet No 1.53 3 1.35 250 0.001 2 1 0.15 0.95 0.85 

Spinach No 1.35 3 1 100 0.001 3 1 0.15 0.9 0.85 

Sugar beet No 1.11 1.38 1.65 250 0.001 2 1 0.15 1.15 0.5 

Swede No 1.35 3 2 100 0.001 1.5 1 0.15 1 0.85 

Turnip No 1.35 3 2 100 0.001 2 1 0.15 1 0.85 

Peas Yes 1.35 3 1 100 0.001 3 1 0.15 1.1 1.05 
a α and β are the parameters which relate critical %N to crop dry weight. 2 

3 
4 
5 
6 
7 

b Rlux is the luxury N consumption coefficient. 
c Tlag (oC d) is the threshold of cumulative day degree for root growth. 
d Krz is the vertical root growth rate. 
e az is the shape parameter controlling root distribution in the soil depth. 
f Kcb is the basal crop coefficient for transpiration.  
 



1 
2 
3 

 
Table 3: Statistical comparison between measured and simulated crop DW yield and %N  
 

Range 
Crop 

 Simulated Measured 

 
D1

a
 

D2
a

 
d. f. 

for D1

Residual 
varianceb

W (t ha-1)c
5.29 - 7.07 5.22 - 7.3 0.82 0.53 0.200 Broad bean 

  %Nd
2.59 - 3.5 2.62 - 3.58 0.23 0.11 12 0.013 

W (t ha-1) 5.13 - 16.6 9.62 - 16.82 5.63 3.90 0.711 Leek 
  %N 0.73 - 1.9 0.99 - 2.06 0.06 0.05 12 0.018 

W (t ha-1) 1.1 - 2.92 0.93 - 2.63 0.15 0.14 0.009 Lettuce 
  %N 1.59 - 2.72 1.72 - 2.81 0.01* 0.01* 12 0.026 

W (t ha-1) 3.36 - 6.7 2.28 - 6.29 1.56 1.29 0.133 Onion 
  %N 1.34 - 2.35 1.05 - 2.6 0.13 0.15 12 0.026 

W (t ha-1) 5.84 - 9.91 6.09 - 9.35 0.84 0.57 0.297 Parsnip 
  %N 1.04 - 1.72 0.96 - 2.3 0.09 0.09 18 0.036 

W (t ha-1) 3.55 - 12.7 3.46 - 13.21 3.47 3.38 0.174 Potato 
  %N 0.89 - 2.68 0.37 - 2.55 0.36 0.18 18 0.038 

W (t ha-1) 0.43 - 1.48 0.62 - 1.32 0.03 0.01 0.001 Radish 
  %N 1.99 - 4.33 2.75 - 4.42 0.19 0.13 12 0.043 

W (t ha-1) 4.25 - 13.3 5.28 - 13.46 3.16 2.98 0.415 Red beet 
  %N 1.09 - 2.71 1.25 - 2.7 0.05 0.05 12 0.007 

W (t ha-1) 10.5 - 20.3 9.77 - 20.65 3.78 3.82 0.608 Sugar beet 
  %N 0.62 - 1.92 0.81 - 1.82 0.19 0.06 12 0.011 

W (t ha-1) 0.8 - 2.92 0.86 - 2.83 0.06 0.06 0.012 Spinach 
  %N 1.8 - 4.64 2.14 - 4.7 0.47 0.26 12 0.044 

W (t ha-1) 4.93 - 10.2 4.94 - 10.48 1.39 1.14 0.308 Swede 
  %N 1.06 - 3.83 1.23 - 3.96 0.54 0.54 18 0.099 

W (t ha-1) 2.71 - 9.9 3.62 - 10.0 0.73* 0.62* 0.456 Turnip 
  %N 0.97 - 4.19 1.23 - 3.97 0.21 0.09 12 0.009 

W (t ha-1) 3.29 - 6.36 1.73 - 5.9 1.23 1.21 0.243 Winter 
cabbage %N 1.64 - 3.65 2.18 - 3.85 0.16 0.12* 12 0.055 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

 
a D1 and D2 are the mean square of the deviations calculated from the difference between the 

measured and simulated values on the absolute scale, and after both a shift in origin and a 
change of scale as described by Eqs. (21) and (22). 

 
b d.f. for residual variance ≥ 20. 
 
c W is the dry weight of the entire plant excluding fibrous roots.  
 
d %N is the concentration of N expressed as a percentage of W. 
 
* indicates not significantly different from the residual variance at P < 0.05. 
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Captions to figures: 

 

Fig. 1. Schematic representation of the SMCR_N model. 

 

Fig. 2. Variation of Rroot (i.e. WWr ΔΔ / ) with W and the root class parameter. 6 
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Fig. 3. Overall comparison between measured and simulated crop %N of 16 crops 

grown under various N treatments during 1970-75. Some treatments were repeated in 

different years. In total there were 192 measurements of %N. 

 

Fig. 4. Comparison of crop W and %N between the measured and simulated results of 

turnip 72 and summer cabbage 70 (a) (d), of parsnip 70 and potato 71 (b) (e), and of 

radish 71 and spinach 71 (c) (f). Lines represent the simulations. Symbols □ and ◊ in 

(a) and (d) represent measurements for turnip 72 and summer cabbage 70, Δ and × in 

(b) and (e) represent measurements for parsnip 70 and potato 71, and * and + in (c) 

and (f) represent measurements for radish 71 and spinach 71, respectively. 

 

Fig. 5. Comparison of responses of crop W to fertilizer-N between the measured and 

simulated by the EU-Rotate_N model and the SMCR_N model for summer cabbage 

70 (a) and sugar beet 73 (b). 

 

Fig.6. Comparison between the measured and simulated W at different fertilizer-N 

levels normalised by Wmax from all fertilizer-N levels: N0 level (a) (0 fertilizer-N), N1 

level (b), N2 level (c), N3 level (d), N4 level (e) and N5 level (f) (max. fertilizer-N). 
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Solid lines are the linear regressions for all crops, and dotted lines represent the linear 

regressions for the crops excluding the low salt tolerant crops of broad bean, carrot, 

pea and onion. 

 

Fig. 7. Simulated ratios of N in the plant excluding fibrous roots to N in the entire 

plant for all crops grown under sub-optimum N conditions (a), and the relationship 

between the ratio and the ‘recovery’ value estimated by Greenwood et al. (1989) and 

used in N_ABLE (b). 

 

Fig. 8. Osmotic effect caused by excessive application of fertilizer-N on yield 

reduction of radish and red beet. The data presented was calculated from the 

experimental results of radish 71, 72 and red beet 70, 73. 

 

Fig. 9. Effect of the correction factor of the osmotic effect caused by excessive 

application of fertilizer-N on carrot yield normalised by the maximum dry weight 

from different fertilizer-N levels (a), and overall comparison between the simulated 

using αosmo=2 for carrot, pea and onion and measured W at two highest fertilizer-N 

levels normalised by Wmax from all fertilizer-N levels (b). 

 

Fig. 10. Comparisons of cumulative soil N mineralization calculated using measured 

air temperature and soil temperature (a), and measured mean air temperature and 

measured mean soil temperature in top 30 cm depth for 1973 and 1975 (b). 
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 W = W0, T = 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Plant growth module, calculating: 
  

• Potential increment in W, ∆W  (Eq. 1); 
• Growth reduction due to lack of N in W (Eq. 2), update ∆W; 
• Root dry weight Wr (Eq. 7); 
• Rooting depth and width (Eq. 6); 
• Root length distributions (Eq. 8). 

N and water requirement module, calculating: 
  

• Potential reference evapotranspiration ETo; 
• Potential soil evaporation and crop transpiration (Eqs. 12-14); 
• Potential N requirement in the top N compartment (Eq. 9); 
• Potential N requirement in the root N compartment (Eq. 10). 

N mineralization module, calculating: 
  

• N mineralization from soil organic matter (Eq. 18), update soil 
mineral N in top 30 cm. 

Osmotica module, calculating: 
  

• Growth reduction caused by osmotic effect due to soil mineral N 
(Eq. 19), update ∆W. 

N and water uptake module, calculating: 
  

• N uptake by roots, and split into the top and root N compartments 
according to the demand, root length distribution and N availability; 

• %N in W and Wr; 
• Water uptake according to the demand, root length distribution and 

water availability. 

Weather data 

Soil data 

Site properties 

Crop data 

N fertilization 

Irrigation 

N and water redistribution module, calculating: 
  

• Water movement in the soil, update soil water content in the soil 
domain; 

• N transport in the soil, update mineral N content in the soil domain. 

T = T + 1

YES

T=TEND? 
NO 

 
STOP

 
Fig. 1 
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