207 research outputs found

    High frequency oscillations during magnetar flares

    Full text link
    The recent discovery of high frequency oscillations during giant flares from the Soft Gamma Repeaters SGR 1806-20 and SGR 1900+14 may be the first direct detection of vibrations in a neutron star crust. If this interpretation is correct it offers a novel means of testing the neutron star equation of state, crustal breaking strain, and magnetic field configuration. We review the observational data on the magnetar oscillations, including new timing analysis of the SGR 1806-20 giant flare using data from the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Rossi X-ray Timing Explorer (RXTE). We discuss the implications for the study of neutron star structure and crust thickness, and outline areas for future investigation.Comment: 5 pages, 1 figure, to appear in the proceedings of the conference "Isolated Neutron Stars: from the Interior to the Surface" (April 2006, London), eds. D. Page, R. Turolla, & S. Zane, Astrophysics & Space Science in pres

    School-based targeted prevention compared to specialist mental health treatment for youth anxiety

    Get PDF
    Background The ‘FRIENDS for life’ program (FRIENDS) is a 10-session cognitive behavioral therapy (CBT) program used for prevention and treatment of youth anxiety. There is discussion about whether FRIENDS is best applied as prevention or as treatment. Methods We compared FRIENDS delivered in schools as targeted prevention to a previous specialist mental health clinic trial. The targeted prevention sample (N = 82; Mage = 11.6 years, SD = 2.1; 75.0% girls) was identified and recruited by school nurses in collaboration with a community psychologist. The clinical sample (N = 88, Mage = 11.7 years, SD = 2.1; 54.5% girls) was recruited for a randomized controlled trial from community child- and adolescent psychiatric outpatient clinics and was diagnosed with anxiety disorders. Results Both samples showed significantly reduced anxiety symptoms from baseline to postintervention, with medium mean effect sizes across raters (youths and parents) and timepoints (post; 12-months follow-up). Baseline youth-reported anxiety symptom levels were similar between the samples, whereas parent-reported youth anxiety was higher in the clinical sample. Conclusions The study suggests that self-reported anxiety levels may not differ between youth recruited in schools and in clinic settings. The results indicate promising results of the FRIENDS program when delivered in schools by less specialized health personnel from the school health services, as well as when delivered in clinics by trained mental health professionals.publishedVersio

    Plasma Magnetosphere Formation Around Oscillating Magnetized Neutron Stars

    Full text link
    The notion of death line of rotating pulsars is applied to model of oscillating neutron stars. It is shown that the magnetosphere of typical non-rotating oscillating stars may not contain secondary plasma to support the generation of radio emission in the region of open field lines of plasma magnetosphere.Comment: Accepted for publication in Astrophysics & Space Scienc

    Soft end-point and mass corrections to the eta' g*g* vertex function

    Full text link
    Power-suppressed corrections arising from end-point integration regions to the space-like vertex function of the massive eta'-meson virtual gluon transition eta' - g*g* are computed. Calculations are performed within the standard hard-scattering approach (HSA) and the running coupling method supplemented by the infrared renormalon calculus. Contributions to the vertex function from the quark and gluon contents of the eta' -meson are taken into account and the Borel resummed expressions for F_{eta' g*g*}(Q2,\omega ,\eta), as well as for F_{eta' g g*}}(Q^{2},\omega =\pm 1,\eta) and F_{eta' g*g*}(Q^{2},\omega =0,\eta) are obtained. It is demonstrated that the power-suppressed corrections \sim (\Lambda ^{2}/Q^{2})^{n}, in the explored range of the total gluon virtuality 1 <Q2 < 25 GeV2, considerably enhance the vertex function relative to the results found in the framework of the standard HSA with a fixed coupling. Modifications generated by the eta ' -meson mass effects are discussed

    Stochastic evolution equations driven by Liouville fractional Brownian motion

    Get PDF
    Let H be a Hilbert space and E a Banach space. We set up a theory of stochastic integration of L(H,E)-valued functions with respect to H-cylindrical Liouville fractional Brownian motions (fBm) with arbitrary Hurst parameter in the interval (0,1). For Hurst parameters in (0,1/2) we show that a function F:(0,T)\to L(H,E) is stochastically integrable with respect to an H-cylindrical Liouville fBm if and only if it is stochastically integrable with respect to an H-cylindrical fBm with the same Hurst parameter. As an application we show that second-order parabolic SPDEs on bounded domains in \mathbb{R}^d, driven by space-time noise which is white in space and Liouville fractional in time with Hurst parameter in (d/4,1) admit mild solution which are H\"older continuous both and space.Comment: To appear in Czech. Math.

    Homogenized dynamics of stochastic partial differential equations with dynamical boundary conditions

    Full text link
    A microscopic heterogeneous system under random influence is considered. The randomness enters the system at physical boundary of small scale obstacles as well as at the interior of the physical medium. This system is modeled by a stochastic partial differential equation defined on a domain perforated with small holes (obstacles or heterogeneities), together with random dynamical boundary conditions on the boundaries of these small holes. A homogenized macroscopic model for this microscopic heterogeneous stochastic system is derived. This homogenized effective model is a new stochastic partial differential equation defined on a unified domain without small holes, with static boundary condition only. In fact, the random dynamical boundary conditions are homogenized out, but the impact of random forces on the small holes' boundaries is quantified as an extra stochastic term in the homogenized stochastic partial differential equation. Moreover, the validity of the homogenized model is justified by showing that the solutions of the microscopic model converge to those of the effective macroscopic model in probability distribution, as the size of small holes diminishes to zero.Comment: Communications in Mathematical Physics, to appear, 200

    Model-based analyses: Promises, pitfalls, and example applications to the study of cognitive control

    Get PDF
    We discuss a recent approach to investigating cognitive control, which has the potential to deal with some of the challenges inherent in this endeavour. In a model-based approach, the researcher defines a formal, computational model that performs the task at hand and whose performance matches that of a research participant. The internal variables in such a model might then be taken as proxies for latent variables computed in the brain. We discuss the potential advantages of such an approach for the study of the neural underpinnings of cognitive control and its pitfalls, and we make explicit the assumptions underlying the interpretation of data obtained using this approach

    Microsimulation as a tool for evaluating redistribution policies

    Get PDF
    During the last twenty years, microsimulation models have been increasingly applied in qualitative and quantitative analysis of public policies. This paper provides a discussion on microsimulation techniques and their theoretical background as a tool for the analysis of public policies with particular attention to redistribution and social policies. Basic principles in using microsimulation models and interpreting their results are analyzed, with particular emphasis on tax incidence, redistribution and poverty analysis. Social welfare analysis permitted by microsimulation techniques is also discussed. Finally, the paper points to limits of present approaches and directions for future research.Au cours des vingt dernières années, l'utilisation des modèles de microsimulation des politiques de redistribution n'a cessé de croître. Cet article offre un rapide survol de ces modèles, l'accent étant mis sur les développements récents dans ce domaine de l'économie appliquée et sur quelques directions de recherche future
    corecore