1,792 research outputs found

    Novel ulcerative leg lesions in yearling lambs: Clinical features, microbiology and histopathology

    Get PDF
    Here we report an outbreak of an atypical, ulcerative dermatitis in North Country mule lambs, located in South Gloucestershire, UK. The lesions, which appeared to be contagious, occured between the coronary band and the carpal joint as a focal, well demarcated, circular, ulcerative dermatitis. Histopathological examination of the lesion biopsies revealed areas of ulceration, epidermal hyperplasia, suppurative dermatitis and granulation tissue. Clumped keratohyalin granules and intracellular keratinocyte oedema (ballooning degeneration) were evident within lesion biopsies, consistent with an underlying viral aetiology. A PCR-based microbiological investigation failed to detect bovine digital dermatitis-associated treponeme phylogroups, Dichelobacter nodosus, Staphylococcus aureus, Dermatophilus congolensis or Chordopoxvirinae virus DNA. However, 3 of the 10 (30 %) and 6 of 10 (60 %) lesion samples were positive for Fusobacterium necrophorum and Streptococcus dysgalactiae DNA, respectively. Contralateral limb swabs were negative by all standard PCR assays. To better define the involvement of F. necrophorum in the aetiology of these lesions, a qPCR targeting the rpoB gene was employed and confirmed the presence of F. necrophorum DNA in both the control and lesions swab samples, although the mean F. necrophorum genome copy number detected in the lesion swab samples was ∼19-fold higher than detected in the contralateral control swab samples (245 versus 4752 genome copies/μl, respectively; P < 0.001). Although we have not been able to conclusively define an aetiological agent, the presence of both F. necrophorum and S. dysgalactiae in the majority of lesions assayed supports their role in the aetiopathogenesis of these lesions

    How does reviewing the evidence change veterinary surgeons' beliefs regarding the treatment of ovine footrot? A quantitative and qualitative study

    Get PDF
    Footrot is a widespread, infectious cause of lameness in sheep, with major economic and welfare costs. The aims of this research were: (i) to quantify how veterinary surgeons’ beliefs regarding the efficacy of two treatments for footrot changed following a review of the evidence (ii) to obtain a consensus opinion following group discussions (iii) to capture complementary qualitative data to place their beliefs within a broader clinical context. Grounded in a Bayesian statistical framework, probabilistic elicitation (roulette method) was used to quantify the beliefs of eleven veterinary surgeons during two one-day workshops. There was considerable heterogeneity in veterinary surgeons’ beliefs before they listened to a review of the evidence. After hearing the evidence, seven participants quantifiably changed their beliefs. In particular, two participants who initially believed that foot trimming with topical oxytetracycline was the better treatment, changed to entirely favour systemic and topical oxytetracycline instead. The results suggest that a substantial amount of the variation in beliefs related to differences in veterinary surgeons’ knowledge of the evidence. Although considerable differences in opinion still remained after the evidence review, with several participants having non-overlapping 95% credible intervals, both groups did achieve a consensus opinion. Two key findings from the qualitative data were: (i) veterinary surgeons believed that farmers are unlikely to actively seek advice on lameness, suggesting a proactive veterinary approach is required (ii) more attention could be given to improving the way in which veterinary advice is delivered to farmers. In summary this study has: (i) demonstrated a practical method for probabilistically quantifying how veterinary surgeons’ beliefs change (ii) revealed that the evidence that currently exists is capable of changing veterinary opinion (iii) suggested that improved transfer of research knowledge into veterinary practice is needed (iv) identified some potential obstacles to the implementation of veterinary advice by farmers

    Detection of covert lesions in focal epilepsy using computational analysis of multimodal magnetic resonance imaging data

    Get PDF
    Objective: To compare the location of suspect lesions detected by computational analysis of multimodal magnetic resonance imaging data with areas of seizure onset, early propagation, and interictal epileptiform discharges (IEDs) identified with stereoelectroencephalography (SEEG) in a cohort of patients with medically refractory focal epilepsy and radiologically normal magnetic resonance imaging (MRI) scans. Methods: We developed a method of lesion detection using computational analysis of multimodal MRI data in a cohort of 62 control subjects, and 42 patients with focal epilepsy and MRI-visible lesions. We then applied it to detect covert lesions in 27 focal epilepsy patients with radiologically normal MRI scans, comparing our findings with the areas of seizure onset, early propagation, and IEDs identified at SEEG. Results: Seizure-onset zones (SoZs) were identified at SEEG in 18 of the 27 patients (67%) with radiologically normal MRI scans. In 11 of these 18 cases (61%), concordant abnormalities were detected by our method. In the remaining seven cases, either early seizure propagation or IEDs were observed within the abnormalities detected, or there were additional areas of imaging abnormalities found by our method that were not sampled at SEEG. In one of the nine patients (11%) in whom SEEG was inconclusive, an abnormality, which may have been involved in seizures, was identified by our method and was not sampled at SEEG. Significance: Computational analysis of multimodal MRI data revealed covert abnormalities in the majority of patients with refractory focal epilepsy and radiologically normal MRI that co-located with SEEG defined zones of seizure onset. The method could help identify areas that should be targeted with SEEG when considering epilepsy surgery

    Improving Fluid Intelligence With Training on Working Memory: A Meta-Analysis

    Full text link
    Working memory (WM), the ability to store and manipulate information for short periods of time, is an important predictor of scholastic aptitude and a critical bottleneck underlying higher-order cognitive processes, including controlled attention and reasoning. Recent interventions targeting WM have suggested plasticity of the WM system by demonstrating improvements in both trained and untrained WM tasks. However, evidence on transfer of improved WM into more general cognitive domains such as fluid intelligence (Gf) has been more equivocal. Therefore, we conducted a meta-analysis focusing on one specific training program, n-back. We searched PubMed and Google Scholar for all n-back training studies with Gf outcome measures, a control group, and healthy participants between 18 and 50 years of age. In total, we included 20 studies in our analyses that met our criteria and found a small but significant positive effect of n-back training on improving Gf. Several factors that moderate this transfer are identified and discussed. We conclude that short-term cognitive training on the order of weeks can result in beneficial effects in important cognitive functions as measured by laboratory tests

    Microstructural Imaging in Temporal Lobe Epilepsy: Diffusion Imaging Changes Relate to Reduced Neurite Density

    Get PDF
    Purpose: Previous imaging studies in patients with refractory temporal lobe epilepsy (TLE) have examined the spatial distribution of changes in imaging parameters such as diffusion tensor imaging (DTI) metrics and cortical thickness. Multi-compartment models offer greater specificity with parameters more directly related to known changes in TLE such as altered neuronal density and myelination. We studied the spatial distribution of conventional and novel metrics including neurite density derived from NODDI (Neurite Orientation Dispersion and Density Imaging) and myelin water fraction (MWF) derived from mcDESPOT (Multi-Compartment Driven Equilibrium Single Pulse Observation of T1/T2)] to infer the underlying neurobiology of changes in conventional metrics. / Methods: 20 patients with TLE and 20 matched controls underwent magnetic resonance imaging including a volumetric T1-weighted sequence, multi-shell diffusion from which DTI and NODDI metrics were derived and a protocol suitable for mcDESPOT fitting. Models of the grey matter-white matter and grey matter-CSF surfaces were automatically generated from the T1-weighted MRI. Conventional diffusion and novel metrics of neurite density and MWF were sampled from intracortical grey matter and subcortical white matter surfaces and cortical thickness was measured. / Results: In intracortical grey matter, diffusivity was increased in the ipsilateral temporal and frontopolar cortices with more restricted areas of reduced neurite density. Diffusivity increases were largely related to reductions in neurite density, and to a lesser extent CSF partial volume effects, but not MWF. In subcortical white matter, widespread bilateral reductions in fractional anisotropy and increases in radial diffusivity were seen. These were primarily related to reduced neurite density, with an additional relationship to reduced MWF in the temporal pole and anterolateral temporal neocortex. Changes were greater with increasing epilepsy duration. Bilaterally reduced cortical thickness in the mesial temporal lobe and centroparietal cortices was unrelated to neurite density and MWF. / Conclusions: Diffusivity changes in grey and white matter are primarily related to reduced neurite density with an additional relationship to reduced MWF in the temporal pole. Neurite density may represent a more sensitive and specific biomarker of progressive neuronal damage in refractory TLE that deserves further study
    • …
    corecore