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Abstract

Comparisons between mass–action or “random” network models and empirical

networks have produced mixed results. Here we seek to discover whether a sim-

ulated disease spread through randomly constructed networks can be coerced to

model the spread in empirical networks by altering a single disease parameter –

the probability of infection. A stochastic model for disease spread through herds

of cattle is utilised to model the passage of an SEIR (susceptible–latent–infected–

resistant) through five networks. The first network is an empirical network of

recorded contacts, from four datasets available, and the other four networks are

constructed from randomly distributed contacts based on increasing amounts of

information from the recorded network. A numerical study on adjusting the value

of the probability of infection was conducted for the four random network mod-

els. We found that relative percentage reductions in the probability of infection,

between 5.6% and 39.4% in the random network models, produced results that

most closely mirrored the results from the empirical contact networks. In all cases

tested, to reduce the differences between the two models, required a reduction in

the probability of infection in the random network.

Keywords: Network; Mass–action; Disease; Recorded contacts; SEIR

simulation
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1. Introduction1

The assumption of random interactions, or mass–action mixing, is a method2

widely used in the modelling of disease (Anderson and May, 1991; Brauer et al.,3

2000; De Jong et al., 1995). With cheaper and easier methods of data capture4

now available to record contact networks (Craft and Caillaud, 2001)5

homogeneously mixed networks or “random networks” have been tested against6

the recorded contact networks with varying results (Duncan et al., 2012;7

Hamede et al., 2012; Kleinlützum et al., 2013; Salathé et al., 2010). In this8

publication we seek to discover whether a simple model of disease spread, based9

on the principles of homogeneous mixing, can approximate a recorded network10

if the probability of infection is suitably adjusted. If this is possible, we will also11

investigate: whether the simplicity of the model affects the closeness of fit to the12

recorded network; whether there is consistency in the adjustment of the13

probability of infection across a variety of random network models and whether14

there is a relationship between the network properties, through values of15

network metrics, and the adjustment to the probability of infection.16

17

Results from comparisons of simulated disease spread on random and structured18

network, whether recorded, empirically derived (i.e. extrapolated from empirical19

data) or theoretically constructed, have been mixed. Some studies have found20

random networks to be a suitable substitute for structured network models21

(Bouma et al., 1995; Dobson and Meagher, 1996; Shirley and Rushton, 2005a)22

whilst others have found it inadequate (Barlow, 2000; D’ Amico et al., 1996;23

Hamede et al., 2012; Porphyre et al., 2008; Shirley and Rushton, 2005b). For24
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inter–herd contact networks, rather than the intra–herd networks discussed25

herein, it has been shown that models should be at least based on any movement26

data available (Vernon and Keeling, 2009). The modification of the transmission27

rate of disease on a random network model has been shown to provide a good28

representation of the results from theoretically constructed networks (Keeling,29

2005). Simplified models of a complete contact network which take account of30

rewiring or preferential mixing show closer agreement than a mean–field model31

(random/mass–action mixing) when modelling Tasmanian devil facial tumour32

disease (Hamede et al., 2012) and it was found that the networks had highly33

connected animals, which would not be found in random networks. When34

modelling spread of influenza in high school students (Salathé et al., 2010), it35

was found that a small–world network (Watts and Strogatz, 1998) with a high36

proportion of repeated contacts fitted the recorded data best, but a37

homogeneous (random/mass–action) mixing model might be sufficient.38

39

In our previous work (Duncan et al., 2012) we presented two stochastic models40

of the passage of an SEIR (susceptible–latent–infected–resistant) disease41

through herds of cattle. One model was based on a contact network constructed42

via continuously recorded interaction data from two herds of cattle, the other, a43

matching network constructed using the assumption of random mixing. Four44

recorded contact datasets were produced by attaching proximity data loggers45

(Drewe et al., 2012; Swain and Bishop-Hurley, 2007) to two separate herds of46

cattle during two separate recording periods. For each dataset the network47

constructed using the principles of random mixing had the same number of48
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contacts as the recorded network but these contacts were distributed randomly49

amongst the animals. The differences shown between the two models were that50

a lower proportion of simulations of the recorded network produced any disease51

spread when compared to those simulations of the random network and, of52

those that did, fewer infected animals were predicted. In this publication we53

seek to estimate the optimal adjustment of the probability of infection of a54

susceptible animal given a contact with an infectious animal so as to minimise55

these differences.56

57

We constructed four types of random networks, with increasing similarities to58

the recorded contact network, and by adjusting the probability of infection59

attempted to gain the best possible approximation for the recorded network.60

Alongside the simulation of disease, we examined the network properties via six61

network metrics: assortativity, average path length, closeness, clustering, degree62

distribution and our own metric – the number of repeated contacts. It has been63

shown that assortativity can be responsible for the lowering of the epidemic64

threshold (Molina and Stone, 2012) and clustering to lower the reproductive65

number R0 and increase the threshold of disease (Miller, 2009). We have66

already shown (Duncan et al., 2012) that the recorded networks had more67

repeated contacts, lower closeness and clustering but higher average path68

lengths. In this work we seek to relate any differences in these metrics to the69

adjustment in the probability of infection. Networks can now be constructed70

with algorithms, to have specific characteristics (Badham and Stocker, 2010a,b;71

Bansal et al., 2009; Hȧkansson et al., 2010). Therefore, if it were the case that a72

5



metric value was linked to the optimal adjustment in the probability of73

infection, it would enable the use of specifically constructed theoretical networks74

in place of recorded contact networks where recording was not feasible.75

2. Materials and Methods76

2.1. Disease77

The SEIR disease that is modelled through all of the network models can be78

described by the system of ordinary differential equations (ODEs) (Anderson79

and May, 1991),80

dS

dt
= −αβSI

N
,

dE

dt
= αβSI

N
− σE,

dI

dt
= σE − γI

and
dR

dt
= γI,

(1)

with S +E + I +R = N , where N is the total (constant) population size. Each81

susceptible animal moves from the susceptible state (S) to the latent state (E)82

with rate αβ following a contact with an infectious animal, where α is the83

probability of infection from a single contact with an infectious animal and β is84

the average number of daily contacts per animal. The parameter σ is the rate at85

which those in the latent class move to the infectious class and γ the rate at86

which animals move from the infectious class to the resistant class.87

2.2. Datasets88

Four datasets were available to us. These were recorded using two herds of89

cattle during two recording periods. The datasets are labelled 1A, 1B, 2A and90
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2B with the number denoting the recording period, first or second, and the91

letter representing the herd. Datasets 1A and 1B were recorded during July92

2009, both producing 30 complete days of usable data with both of the herds93

returning complete data for 29 animals. The final two datasets recorded 2894

complete days of data across August and September 2009 with 2A recording95

data for 21 animals whilst 2B returned data for 17 animals.96

2.3. Network Construction97

In order to answer the question about how close the approximation to our98

recorded network needed to be, we constructed four types of random network.99

Each type of network was constructed using increasing amounts of information100

taken from the recorded data. Details of how all the networks were constructed101

follows, including details on the construction of the recorded and102

matched–on–day network used in our previous publication (Duncan et al.,103

2012). The matched–on–day network was previously referred to as a104

mass–action or random network but for the purposes of this paper we are using105

the description “matched–on–day” to demonstrate its relationship to the other106

types of random network we present. The information required from the107

recorded network and the mathematical construction for each type of random108

network can be seen in table 1.109

2.3.1. Recorded and Matched–On–Day Networks110

For each of the four datasets a contact network was established, with the nodes111

representing the animals, and the edges, the contacts. A contact was defined to112

be any recorded interaction that lasted longer than 4 minutes. Although the113
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term contact has been used, only close proximity of the animals can be assumed114

rather than actual physical contact. These networks were split into consecutive115

12 hour time steps to give a manageable number of edges for each step in the116

later disease simulation. An identical number of random networks were117

constructed by taking the total number of interactions recorded in the118

particular 12 hour period for a particular dataset, creating the same number of119

random contacts and randomly allocating each of these contacts to pairs of120

animals in the respective herd. For each dataset and 12 hour period this gave us121

two networks, a recorded contact network and a random (“matched–on–day”)122

network, with the same number of nodes and edges but with different edge123

distributions for each 12 hour period for each of the four datasets.124

2.3.2. Additional Random Networks125

For each dataset, in addition to the matched–on–day network, we constructed126

three other random networks: “constant–on–animal”, “constant–on–day” and127

“matched–on–animal”. For the constant–on–animal network all animals had the128

same number of contacts as one another for every 12 hour period. The contacts129

were randomly assigned amongst the animals whilst ensuring that each animal130

had the required number of contacts. The number of contacts per animal was131

calculated by averaging all the recorded contacts over the number of animals132

and the number of 12 hour time periods per dataset. Due to rounding, this133

meant that the total number of contacts for each of these networks was different134

from the total number of contacts in the recorded dataset they were derived135

from.136
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137

For the constant–on–day network, the same total number of contacts per 12138

hour time period as with the constant–on–animal network was used but the139

contacts were allocated randomly amongst all the animals. There were no other140

constraints on the number of contacts an individual animal could have. The141

structure of this network was seen as lying between that of the142

constant–on–animal network and the matched–on–day network. Very little143

information (see table 1) from the recorded network was used in the construction144

of either the constant–on–animal network or the constant–on–day networks.145

146

In the matched–on–animal network each animal had exactly the same number147

of contacts as in the recorded network, for each 12 hour period, but those148

contacts were randomly distributed amongst the other animals subject to this149

condition i.e. that the number of contacts each animal had was the same as the150

recorded network. As with the other random network, matched–on–animal151

networks were constructed for all four datasets.152

2.4. Network Metrics153

To investigate the differences between the five networks (constant–on–animal;154

constant–on–day; matched–on–day; matched–on–animal and recorded) six155

different network metrics were calculated. The first was our own metric, the156

number of repeated edges, chosen to quantify the observed difference in157

repeated contacts. The second was closeness, the inverse of the average length158

of the shortest paths to/from all the other vertices in the network (Csardi,159
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2013), and the third metric chosen was the clustering coefficient, a measure of160

the degree to which nodes in a network tend to cluster together (Newman,161

2003). The fourth metric that we used, average path length (Strogatz, 2001), is162

the average number of steps along the shortest path for all possible pairs of163

nodes. We also calculated the average degree distribution and finally the164

assortativity coefficient to establish whether assortative mixing, connections165

between nodes that are similar, was taking place (Molina and Stone, 2012).166

Each of these metrics were calculated for each network and for each dataset.167

2.5. Modelling Disease Spread168

All the models, using recorded or any of the four random network types, were169

implemented as stochastic due to the small numbers of animals in each of the170

datasets, and hence the increased influence of individual stochastic events on171

the overall disease transmission process (Brauer et al., 2000). Infection was172

always introduced by randomly infecting a single animal at the start of each173

model simulation, thus this animal began the simulation in the latent state.174

The periods of time each animal spends in the latent and infectious states were175

sampled from exponential distributions with means 1/σ and 1/γ. For simplicity,176

and because the largest dataset only contained 30 days of continuously recorded177

interactions, each infected animal had its length of resistance set to greater than178

30 days. Both models were simulated many times and it was found that the179

probability densities of the number of animals in each disease state at each time180

point, appeared to stabilise by 5000 simulations. All results presented were181

produced from 5000 simulations, where each simulation was run for the number182
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of days contained in the respective dataset with an initially infected animal183

randomly chosen for each simulation.184

185

The value of β, the mean contact rate, used in the simulations was dependent186

on the dataset used, as each of the four datasets had a different average contact187

rate. Thus we had four values for β corresponding to our four datasets.188

189

The disease spread through each model was a hypothetical disease with190

parameter values that allowed the peak of infection of an epidemic to occur191

within the 28 days of data available from the shortest dataset. Latent and192

infectious periods of six days were chosen. Using average values of β = 7.987193

from our data and R0 = 5 (considered reasonable), a rounded value of α = 0.1194

was calculated from195

R0 = αβ
γ
. (2)

As each dataset has a different value of β, the contact rate, they will also have a196

different value of R0 but the characteristics specific to the disease (α = 0.1,197

1/σ = 6 days and 1/γ = 6 days) remain fixed across all datasets for the recorded198

network. For all random networks only the value of α was altered. It was199

assumed that when an animal became infected its behaviour did not change200

such that its contacts continued as normal. This is not necessarily the case201

(Rush et al., 2008; Wilesmith, 1998) but until there exists actual contact data202

for a herd with spreading disease, it is parsimonious to use the actual data that203

we do have.204
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2.6. Measuring the Differences in Disease Spread205

The results of our previous paper (Duncan et al., 2012) were divided into two206

parts: the proportion of 5000 simulations that produced no infection and207

percentiles of the number of infected animals predicted by those simulations208

that did produce infection. For all values of the disease parameters, the209

recorded network model had a higher proportion of simulations showing no210

infection and of those simulations that did show infection, fewer animals were211

modelled as infected. In an attempt to minimise the differences between the212

recorded and random network models the value of α was altered in each type of213

random network model. The value of α was chosen because the value of β was214

defined by the datasets and needed to be constant to maintain the continuity in215

number of contacts between the networks and γ has a basis in other diseases216

and was dependent on the amount of data available to us, a maximum of 30217

days. Additionally the large uncertainty in the estimates of the probability of218

infection for real diseases makes α an attractive candidate for adjustment in219

random network models.220

221

The standard value of α = 0.1 from our previous paper (Duncan et al., 2012)222

was used again for the recorded network model and a numerical study223

conducted on the value of α for the various random network models. For each of224

the 40 equally spaced values of α in the range 0.025 ≤ α ≤ 0.4, all random225

network models were run with 5000 simulations. The mean absolute difference226

in both the number of infected animals M.A.D.
No. Inf.

and in the proportion of the227

5000 simulations showing no infection M.A.D.
Propn. Zero Sims.

were calculated as shown in228
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equations (3) and (4). In these equations Prec and Prand represent the proportion229

of the 5000 simulations that produced no infection for the recorded and random230

network models respectively with Irec and Irand the mean number of infected231

animals for each model from those simulations that did produce infection. The232

rand refers to any of the four types of random network: constant–on–animal,233

constant–on–day, matched–on–day and matched–on–animal. Each individual234

time period is represented by t and T is the total number of time periods.235

M.A.D.
No. Inf.

=
∑
t

∣Irec − Irand∣
T

. (3)

M.A.D.
Propn. Zero Sims.

=
∑
t

∣Prec − Prand∣
T

, (4)

This examination of α gave an initial estimate of where the minima occurred for236

each type of random network and dataset. To improve these estimates an237

interval of length 0.05, including this first estimate, was examined in increments238

of length 0.00125 for each type of network and each dataset. To get a single239

value for the minima, splines were fitted to these data points for the mean240

absolute difference in both number of infected animals and proportion of241

simulations showing no infection, using the smooth.spline function of CRAN R242

(CRAN-R, 2013) with a smoothing parameter of 0.7 which gave the closest243

agreement with the visual minimum of the data points. This left two values of α244

for each random network and dataset: one value minimising M.A.D.
No. Inf.

and a245

second minimising M.A.D.
Propn. Zero Sims.

. The arithmetic mean of these two values was246

calculated to leave one value αm to minimise the differences between the247

recorded and random network models for each of the four random networks and248
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the four datasets. We conducted similar examinations to find αm for the249

matched–on–day network model when we set α = 0.05 and α = 0.2 in the250

recorded network model. This sensitivity analysis was carried out to establish251

whether the value of α used in the recorded network model had any effect on252

the adjustment to find αm.253

3. Results254

3.1. Network Metrics255

The 5000 simulations of the random contact networks, outlined above, were256

stored to calculate average values for the six metrics. For each dataset the257

contact networks were split into 12 hour periods and the metrics calculated on258

each of the 5000 simulations. The results were averaged across the simulations259

and then over the 12 hour periods. These were then compared to the equivalent260

metrics calculated for the recorded network which was split into 12 hour periods261

after the disease simulations.262

263

Figure 1 shows the results of the metrics in six separate plots. Each plot shows264

results for all networks split by the four datasets. There is no clear result from265

the metrics as to which of the random networks provides the closest266

approximation to our recorded network. The recorded network had more267

repeated edges and lower closeness than any of the random networks and this268

was consistent across all the datasets. In all but one dataset the recorded269

network also had higher average path length than the random networks. The270

more information from the recorded network used to construct the random271
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network – the greater the number of repeated edges in the random networks272

and hence closer to that of the recorded network.273

274

Each network shows disassortativity across all datasets. For three of the275

datasets the recorded network was more disassortative than all four random276

networks and, as with the repeated edges, the more information from the277

recorded network used by the random network, in general, the more278

disassortative they became. Generally speaking in, three metrics (average path279

length, average closeness and average repeated edges) increasing similarity with280

the recorded network was associated with the random model utilising increased281

information from the recorded network.282

3.2. Disease Spread283

A sample of the results for the mean absolute differences in both the number of284

infected animals and the proportion of 5000 simulations showing no infection285

(M.A.D.
No. Inf.

and M.A.D.
Propn. Zero Sims.

) can be seen in figure 2. These are the results for286

the matched–on–day network for all four datasets. The results for the other287

random networks can be seen in the supplementary information. The results for288

M.A.D.
No. Inf.

are shown in the solid lines using the left hand axes with the results of289

M.A.D.
Propn. Zero Sims.

plotted as dashed lines using the right hand axes.290

291

For each of the datasets and across all the random networks the results were292

very similar with four points to note. First there is a single minimum value of293

αm and the differences in M.A.D.
No. Inf.

and M.A.D.
Propn. Zero Sims.

at this value of αm are very294
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small. Secondly the value of αm is always less than the value of α = 0.1 used in295

the recorded network. It is also consistent, across all networks and datasets,296

that the value of α that results in minimising the differences in the proportion297

of the 5000 simulations showing no infection is larger than the respective value298

of α for the difference in the number of infected animals. Finally, there are clear299

but not very large differences in the value of αm for each type of network across300

the four datasets.301

302

The results from the proportion of simulations with no infected animals and the303

values of the 25th, 50th and 75th percentiles of the number of infected animals304

from those simulations showing infection are plotted for both the recorded305

network model (α = 0.1; black, solid lines) and the matched–on–day network306

model (αm = 0.0696; red, dashed lines) are plotted in figure 3 for dataset 1A.307

Similar plots for the other random networks are shown in the supplementary308

information. In all cases it is clear that by adjusting α the results of simulated309

disease spread through the random networks are extremely close to the results310

from the recorded network. Using the single value of αm provides very close311

agreement and it is not necessary to use both the value of α that resulted in312

M.A.D.
No. Inf.

, and the one that gives M.A.D.
Propn. Zero Sims.

.313

314

To compare the differences between the results for each of the four types of315

random networks the minimum values of M.A.D.
No. Inf.

and M.A.D.
Propn. Zero Sims.

are shown316

in figure 4. These were plotted for each dataset along with the relative317

percentage decrease in α needed to achieve αm. Figure 4 also shows the318
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differences αm for each type of network across the four datasets. It is clear from319

the plot that the mean differences in number of infected animals are much less320

than a single animal for each of the networks. The value is dependent on the321

network being used in the simulation as can be seen by the consistent order of322

results (constant–on–day, constant–on–animal, matched–on–day and323

matched–on–animal). It is worth noting that the network using the least324

information from the recorded network, constant–on–animal, is not the poorest325

performing. The relative percentage decrease needed to achieve αm is326

somewhere between 5.6% and 39.4% but this varies depending on the dataset327

and the random network used.328

329

It is clear from the left–hand plot in figure 4 that the values of M.A.D.
No. Inf.

are330

dependent on the simplicity of the model. The model using the most331

information, the matched–on–animal network, is closest to the recorded332

network. However the simplest network (constant–on–animal) was numerically333

closer to the recorded network than the second simplest network334

(constant–on–day). This was also the case for M.A.D.
Propn. Zero Sims.

for all but dataset335

1B. The loss of representativeness that arises from choosing the simplest336

random network is not large.337

338

The right–hand plot of figure 4 shows the relative percentage decrease of α339

needed to achieve αm for each the random networks and for each dataset. The340

patterns in the adjustment are not completely consistent either with regard to341

the datasets or networks. There appears by eye to be a dataset effect in the342
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right–hand plot of figure 4. General linear regression, included in the343

supplementary information, suggests there is evidence of both a dataset effect344

and random network effect. Each factor was fairly strongly significant after the345

addition of the other factor, p = 0.0007 and p = 0.042 for dataset and network346

respectively. The mean reduction in α was 26.8% and the median reduction was347

30.0%.348

349

The exact values of αm are shown in table 2. For three of the datasets the350

highest value of αm occurred in the matched–on–animal network, the network351

using the most information from the recorded network. Nevertheless for dataset352

2A, the matched–on–animal had the second highest value of αm. For the first353

recording period (datasets 1A and 1B) the value of αm increases as the networks354

use more information from the recorded network and this trend is less clear for355

the second recording period.356

357

Also included in the supplementary information are plots of the differences in358

the proportion of 5000 simulations that produced no infection and the median359

number of infected animals from those simulations that did produce infection.360

4. Discussion361

It is clear from the simulations of disease spread that a simple homogeneous362

mixing model can approximate, very closely, a recorded network if the363

probability of infection, α, is optimally adjusted. Each of our four types of364

random network can approximate the recorded network and can do so for each365
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of the four datasets. The adjustment was consistently a reduction in α. The size366

of the adjustment was dependent on the dataset and random network used for367

the simulations. The relative percentage reduction in α ranged from 5.6% to368

39.4%. The results of the sensitivity analysis shown in the supplementary369

information would suggest that the value of αm as a proportion of α is370

negatively associated with the value of α used in the recorded network, at least371

for the values of α that we tested.372

373

It has previously been shown that higher clustering tends to produce shorter374

path lengths within theoretical networks (Shirley and Rushton, 2005a), that375

clustering and assortativity can reduce epidemic size (Miller, 2009) and that376

increased clustering or increased assortativity can increase the likelihood of377

simulated disease spread occurring (Badham and Stocker, 2010a). There is378

however disagreement over whether clustering influences epidemics on379

undirected networks with regular (many repeated contacts) or random380

construction (Eames, 2008; Moslonka-Lefebvre et al., 2009).381

382

Theoretical networks constructed with many repeated contacts show slower383

disease spread than random networks (Eames, 2008). This is also shown by384

both our earlier work (Duncan et al., 2012) and further demonstrated by385

random networks constructed here. In general, our random networks with lower386

repeated contacts, i.e. the simpler networks (contact–on–animal and387

contact–on–day) required smaller values of αm suggesting that disease spreads388

quicker through them.389
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390

As all the random networks are derived from the recorded network and the391

average degree distributions are either extremely close to one another or392

identical, we can gain little insight from degree distribution. However, degree393

distribution alone has been shown to not provide enough information for394

prediction of disease spread (Ames et al., 2011; Boily et al., 2007).395

396

We found no clear relationship between the values of the metrics and the values397

of αm and formal inferential statistics are not possible given the sample size.398

Any inferential statistical relationship will, however, depend on a large number399

of herds being assessed in the same manner.400

401

One of the largest differences between the recorded network and the random402

networks is the number of repeated edges. One possible reason for the high403

number of repeated edges in the recorded network was that the herds were404

constructed of cows with calves at foot. Of the repeated edges recorded, 15% to405

30%, depending on dataset, were between a cow and her calf. These repeated406

edges could also be a reason for the increased disassortativity found in the407

recorded network. Assortative mixing would normally entail cows contacting408

cows and calves contacting calves. With young calves present in the herd, the409

disassortative mixing, resulting from cow contacting calf, would seem probable.410

Assortativity has been shown to decrease epidemic size (Miller, 2009) and we411

have found that αm < 0.1 for all networks and datasets, showing that the412

recorded network produces slower disease spread than the random networks.413
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The age of the calves may also explain why in the first recording period414

(datasets 1A and 1B) the value of αm increases as the random networks415

approach the recorded network. In the second recording period, where the416

calves were a little older, there is not such a clear pattern.417

418

It has recently been shown that indirect, environmental or faecal, contact may419

aid the spread of disease in herds of cattle (Kleinlützum et al., 2013). These420

factors cannot be taken into account with the data available to us. Likewise we421

only have proximity data with which to construct our contact networks. We do422

not know the extent of the contacts and how likely each one is to spread disease.423

However, the only way to gather such data would be to film the animals at all424

times and to monitor real life spread of infection. Even those studies which425

attempt to take such things into account by observing animals and categorising426

the contacts by strength (Norton et al., 2012) are still summarising the contact427

networks as they extrapolate their networks from the observed data.428

5. Conclusion429

We have shown that it is possible to closely model disease spread through a430

network of recorded contacts with a network of randomly allocated contacts by431

adjusting the probability of infection. The adjustment in probability of infection432

is consistently a reduction and there appears to be a dataset effect in the value433

of the reduction. The exact values in adjustment varies between 5.6% and434

39.4% and as yet, with only four datasets, we have no clear relationship between435

the network properties and the adjustment in the probability of infection.436
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Recommended reductions in α should not be made until further intra–herd437

contact data becomes available. Importantly, the simplest network, requiring438

least information to construct, performed reasonably well by giving a close439

match to disease spread in the recorded network. This is important because it440

suggests that in the absence of real contact data a good approximation to441

disease spread could be made if the correct adjustment in the probability were442

known.443
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Table 1: Descriptions of how the four random networks relate to the recorded network and how
much information from the recorded network was necessary to create them.

Information needed to
construct random net-
work

Random Network Mathematical Comparison

Total number of con-
tacts, number of animals,
total number of time pe-
riods

constant–on–animal ∑
j

xi,j,t = k ∀i, t

Total number of con-
tacts, number of animals,
total number of time pe-
riods

constant–on–day ∑
i,j;i>j

xi,j,t = kN ∀t

Total number of contacts
per time period, number
of animals

matched–on–day ∑
i,j;i>j

xi,j,t = ∑
i,j;i>j

ri,j,t∀t

Total number of contacts
per animal per time pe-
riod, number of animals

matched–on–animal ∑
j

xi,j,t =∑
j

ri,j,t∀i, t

where:

xi,j,t = a simulated contact between animals i and j during time period t with i ≠ j
ri,j,t = a recorded contact between animals i and j during time period t with i ≠ j

k = round⎛⎜⎝
∑

i,j,t;i>j

ri,j,t

NT

⎞⎟⎠
N = Total population size (Number of animals)

T = Total number of timeperiods
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Table 2: Values of αm, the value of the probability of infection α, used to minimise the differences
between the recorded and random network models for each of the four types of random networks
- for each of the four datasets. A value of α = 0.1 was used for the recorded model across all
simulations.

αm per dataset
Network 1A 1B 2A 2B

constant–on–animal 0.0645 0.0684 0.0705 0.0944
constant–on–day 0.0649 0.0770 0.0606 0.0757
matched–on–day 0.0695 0.0830 0.0664 0.0844

matched–on–animal 0.0799 0.0915 0.0765 0.0886
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Figure 1: The average values of all six metrics calculated for each of the five networks. The
symbols ○, △, +, × and ● denoting results from the constant–on–animal, constant–on–day,
matched–on–day, matched–on–animal and recorded networks respectively. The vertical dashed
lines represent the 95% percentiles for each metric.
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Figure 2: Plots of the mean absolute difference in the number of infected animals (M.A.D.
No. Inf.

)
(left–hand axis, solid line) and mean absolute difference in the proportion of the 5000 simulations

showing no infection ( M.A.D.
Propn. Zero Sims.

) (right–hand axis, dashed line) against α for all four

datasets. α = 0.1 was used in the recorded network model.

31



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
ro

po
rt

io
n 

of
 5

00
0 

ru
ns

 s
ho

w
in

g 
no

 in
fe

ct
ed

 a
ni

m
al

s

0 5 10 15 20 25 30
Days

0
2

4
6

8
25

th
, 5

0th
 a

nd
 7

5th
 p

er
ce

nt
ile

s 
of

 n
um

be
r 

in
fe

ct
ed

 a
ni

m
al

s

0 5 10 15 20 25 30
Days

Plots of Proportion Zero Simulations and Percentiles of Infected Animals from Dataset 1A

Figure 3: Left–hand plot: Proportion of 5000 simulations that produced no infection for the
recorded network model with α = 0.1 (black, solid line) and the adjusted random network model
with α = αm (red, dashed line). Right–hand plot: The 25th, 50th and 75th percentiles of the
number of infected animals from those simulations that did produce infection for the recorded
network model with α = 0.1 (black, solid line) and the adjusted random network model with
α = αm (red, dashed line). Dataset 1A was used for both models.
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Figure 4: Left–hand plot: The values of the mean absolute difference in the number of infection

animals (M.A.D.
No. Inf.

) (unfilled, red symbols) and the mean absolute difference in the proportion of

5000 simulations showing no infection ( M.A.D.
Propn. Zero Sims.

) (filled, black symbols) for αm plotted

for each of the four random networks. Right–hand plot: The relative percentage decrease
in α to achieve αm from the value of α = 0.1 used in the recorded network. The shading
denotes the amount of information from the recorded needed to construct the random network,
lightest representing the least information and the darkest representing the most information.
In both plots the symbols ◯, ◻, △ and ▽ represent the constant–on–animal, constant–on–day,
matched–on–day and matched–on–animal networks.
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